Bernstein-Kantorovich quasi-interpolants K^(2r-1)n(f, x) are considered and direct, inverse and equivalence theorems with Ditzian-Totik modulus of smoothness ω^2rφ(f, t)p (1 ≤ p ≤+∞) are obtained.
The present paper proves that if(x) ∈ C[0,1], changes its sign exactly l times at 0 〈 y1〈 y2 … 〈 y1 〈 1 in (0, 1), then there exists a pn(x) ∈ Пn(+), such that |f(x)- p(x)/pn(x)|≤ Cωφ(f,n^...The present paper proves that if(x) ∈ C[0,1], changes its sign exactly l times at 0 〈 y1〈 y2 … 〈 y1 〈 1 in (0, 1), then there exists a pn(x) ∈ Пn(+), such that |f(x)- p(x)/pn(x)|≤ Cωφ(f,n^(-1/2)), where ρ(x) is defined by ρ(x)={^lПi=1(x-yi),if f (x)≥0 for x ∈(y1,1), {-^lПi=1(x-yi),if f (x)〈0 for x ∈(y1,1), which improves and generalizes the result of .展开更多
This paper is devoted to study direct and converse approximation theorems of the generalized Bemstein operators Cn (f, sn,x) via so-called unified modulus ωφλ^2 (f,t), 0 ≤ λ ≤1. We obtain main results as fol...This paper is devoted to study direct and converse approximation theorems of the generalized Bemstein operators Cn (f, sn,x) via so-called unified modulus ωφλ^2 (f,t), 0 ≤ λ ≤1. We obtain main results as followsωφλ^2 (f,t)=O(t^α)←→|Cn(f,sn,x)-f(x)|=O((n^-1/2δn^1-λ(x))^α),where δn^2(x)=max{φ^2(x),1/n} and 0〈α〈2.展开更多
基金Supported by the National Natural Science Foundation of China (1057104010801043)+1 种基金Natural Science Foundation of Hebei Province (08M001)Foundation of Education Department of Hebei Province (2008126)
文摘Bernstein-Kantorovich quasi-interpolants K^(2r-1)n(f, x) are considered and direct, inverse and equivalence theorems with Ditzian-Totik modulus of smoothness ω^2rφ(f, t)p (1 ≤ p ≤+∞) are obtained.
基金Supported in part by National Natural Science Foundations of China under the grant number 10471130
文摘The present paper proves that if(x) ∈ C[0,1], changes its sign exactly l times at 0 〈 y1〈 y2 … 〈 y1 〈 1 in (0, 1), then there exists a pn(x) ∈ Пn(+), such that |f(x)- p(x)/pn(x)|≤ Cωφ(f,n^(-1/2)), where ρ(x) is defined by ρ(x)={^lПi=1(x-yi),if f (x)≥0 for x ∈(y1,1), {-^lПi=1(x-yi),if f (x)〈0 for x ∈(y1,1), which improves and generalizes the result of .
基金Supported by the Natural Science Foundation of China (No. 11271263, 11371258)
文摘This paper is devoted to study direct and converse approximation theorems of the generalized Bemstein operators Cn (f, sn,x) via so-called unified modulus ωφλ^2 (f,t), 0 ≤ λ ≤1. We obtain main results as followsωφλ^2 (f,t)=O(t^α)←→|Cn(f,sn,x)-f(x)|=O((n^-1/2δn^1-λ(x))^α),where δn^2(x)=max{φ^2(x),1/n} and 0〈α〈2.