While it is widely accepted that genetic diversity determines the potential of adaptation,the role that gene expression variation plays in adaptation remains poorly known.Here we show that gene expression diversity co...While it is widely accepted that genetic diversity determines the potential of adaptation,the role that gene expression variation plays in adaptation remains poorly known.Here we show that gene expression diversity could have played a positive role in the adaptation of Miscanthus lutarioriparius.RNA-seq was conducted for 80 individuals of the species,with half planted in the energy crop domestication site and the other half planted in the control site near native habitats.A leaf reference transcriptome consisting of 18,503 high-quality transcripts was obtained using a pipeline developed for de novo assembling with population RNA-seq data.The population structure and genetic diversity of M.lutarioriparius were estimated based on 30,609 genic single nucleotide polymorphisms.Population expression(Ep) and expression diversity(Ed)were defined to measure the average level and the magnitude of variation of a gene expression in the population,respectively.It was found that expression diversity increased while genetic Resediversity decreased after the species was transplanted from the native habitats to the harsh domestication site,especially for genes involved in abiotic stress resistance,histone methylation,and biomass synthesis under water limitation.The increased expression diversity could have enriched phenotypic variation directly subject to selections in the new environment.展开更多
In order to meet the increasing demands for the development of large varieties of new molecules for discovering new drugs and materials, organic chemists are developing many novel multifunctional building blocks, whic...In order to meet the increasing demands for the development of large varieties of new molecules for discovering new drugs and materials, organic chemists are developing many novel multifunctional building blocks, which are assembled rationally to create ‘nature-like' and yet unnatural organic molecules with well-defined structures and useful properties. Sugar amino acids(SAAs), the carbohydrate derivatives bearing both amino and carboxylic acid functional groups, are important ones of these multifunctional building blocks, which can be used to create novel materials with potential applications as glycomimetics and peptidomimetics. This review will focus on recent synthetic strategies of SAAs and their applications in creating large number of structurally diverse glycomimetics and peptidomimetics.展开更多
基金supported by grants from the Key Program of the National Natural Science Foundation of China (No.91131902)the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-EX-QR-1)
文摘While it is widely accepted that genetic diversity determines the potential of adaptation,the role that gene expression variation plays in adaptation remains poorly known.Here we show that gene expression diversity could have played a positive role in the adaptation of Miscanthus lutarioriparius.RNA-seq was conducted for 80 individuals of the species,with half planted in the energy crop domestication site and the other half planted in the control site near native habitats.A leaf reference transcriptome consisting of 18,503 high-quality transcripts was obtained using a pipeline developed for de novo assembling with population RNA-seq data.The population structure and genetic diversity of M.lutarioriparius were estimated based on 30,609 genic single nucleotide polymorphisms.Population expression(Ep) and expression diversity(Ed)were defined to measure the average level and the magnitude of variation of a gene expression in the population,respectively.It was found that expression diversity increased while genetic Resediversity decreased after the species was transplanted from the native habitats to the harsh domestication site,especially for genes involved in abiotic stress resistance,histone methylation,and biomass synthesis under water limitation.The increased expression diversity could have enriched phenotypic variation directly subject to selections in the new environment.
基金supported by the National Science Foundation for Young Scientists of China(No.21302068)the Natural Science Foundation of Jiangsu Province,China(No.BK20130127)+2 种基金Jiangsu Province‘‘Six Summit Talent’’Foundation(No.2012-SWYY-009)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120093120002)the Fundamental Research Funds for the Central Universities(Nos.JUSRP51319B,JUSRP51411B)
文摘In order to meet the increasing demands for the development of large varieties of new molecules for discovering new drugs and materials, organic chemists are developing many novel multifunctional building blocks, which are assembled rationally to create ‘nature-like' and yet unnatural organic molecules with well-defined structures and useful properties. Sugar amino acids(SAAs), the carbohydrate derivatives bearing both amino and carboxylic acid functional groups, are important ones of these multifunctional building blocks, which can be used to create novel materials with potential applications as glycomimetics and peptidomimetics. This review will focus on recent synthetic strategies of SAAs and their applications in creating large number of structurally diverse glycomimetics and peptidomimetics.