A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL...A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.展开更多
The brain functions as a closed-loop system that continuously generates behavior in response to the external environment and adjusts actions based on the outcomes.Traditional research methodologies in neuroscience,esp...The brain functions as a closed-loop system that continuously generates behavior in response to the external environment and adjusts actions based on the outcomes.Traditional research methodologies in neuroscience,especially those employed in brain imaging experiments,have mainly adopted an open-loop paradigm(Grosenick et al.,2015).Functional neural circuits are analyzed offline and subsequently tested through manipulation of neuronal activities within specific regions or with genetic markers.By establishing a closed-loop research paradigm,functional ensembles can be detected and tested in real time with temporal sequences.These functional ensembles,rather than brain regions or genetically labeled neural populations,serve as fundamental units of neural networks,offering valuable insights into the dissection of neural circuits.The closed-loop research paradigm also enables the capture of high-dimensional activities of internal brain dynamics and precise elucidation of physiological processes such as learning,decision-making,and sleep.展开更多
Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping appro...Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping approach of a slave Raman laser within an optical phase-locked loop(OPLL),which finds practical application in an atomic gravimeter,where the OPLL frequently switches between near-resonance lasers and significantly detuned Raman lasers.The method merges the advantages of rapid and extensive frequency hopping with the OPLL’s inherent low phase noise,and exhibits a versatile range of applications in compact laser systems,promising advancements in portable instruments.展开更多
The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in...The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in the literature.The number density and average diameter of the dislocation loops obtained from the CD simulations are in good agreement with the experimental data obtained from transmission electron microscopy(TEM)observations of Fe~+-irradiated Solution Annealed 304,Cold Worked 316,and HR3 austenitic steels in the literature.The CD simulation results demonstrate that the diffusion of in-cascade interstitial clusters plays a major role in the dislocation loop density and dislocation loop growth;in particular,for the HR3 austenitic steel,the CD model has verified the effect of temperature on the density and size of the dislocation loops.展开更多
Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modu...Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modulate both the activity and resistance to sulfur poisoning by dual substitution of Mo and Ni ions with the Fe-sites of LaFeO_(3)perovskite.It is found that partial substitution of Ni for Fe substantially improves the activity of LaFeO_(3)perovskite,while Ni particles prefer to grow and react with H_(2)S during the long-term successive redox process,resulting in the deactivation of oxygen carriers.With the presence of Mo in LaNi_(0.05)Fe_(0.95)O_(3−σ)perovskite,H_(2)S preferentially reacts with Mo to generate MoS_(2),and then the CO_(2)oxidation can regenerate Mo via removing sulfur.In addition,Mo can inhibit the accumulation and growth of Ni,which helps to improve the redox stability of oxygen carriers.The LaNi_(0.05)Mo_(0.07)Fe_(0.88)O_(3−σ)oxygen carrier exhibits stable and excellent performance,with the CH_(4)conversion higher than 90%during the 50 redox cycles in the presence of 50 ppm H_(2)S at 800℃.This work highlights a synergistic effect in the perovskite oxides induced by dual substitution of different cations for the development of high-performance oxygen carriers with excellent sulfur tolerance.展开更多
To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling s...To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling strategy was adopted to decouple the biomass gasification process,and the composite oxygen carrier was prepared by embedding Fe_(2)O_(3) in molecular sieve SBA-16 for the chemical looping reforming process of pyrolysis micromolecular model compound methane,which was expected to realize the directional reforming of pyrolysis volatiles to prepare hydrogen-rich syngas.Thermodynamic analysis of the reaction system was carried out based on the Gibbs free energy minimization method,and the reforming performance was evaluated by a fixed bed reactor,and the kinetic parameters were solved based on the gas–solid reaction model.Thermodynamic analysis verified the feasibility of the reaction and provided theoretical guidance for experimental design.The experimental results showed that the reaction performance of Fe_(2)O_(3)@SBA-16 was compared with that of pure Fe_(2)O_(3) and Fe_(2)O_(3)@SBA-15,and the syngas yield was increased by 55.3%and 20.7%respectively,and it had good cycle stability.Kinetic analysis showed that the kinetic model changed from three-dimensional diffusion to first-order reaction with the increase of temperature.The activation energy was 192.79 kJ/mol by fitting.This paper provides basic data for the directional preparation of hydrogen-rich syngas from biomass and the design of oxygen carriers for pyrolysis of all-component chemical looping reforming.展开更多
In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Mill...In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field,and the nth-order discretization formulation of the boundary integral equation is derived.In addition,the computation of loop subdivision surfaces and the subdivision rules are introduced.In order to confirm the effectiveness of the algorithm,the computed results are contrasted and analyzed with the results under Monte Carlo simulations(MCs)through several numerical examples.展开更多
The ultrasound pressure-strain loop (PSL) technique is a non-invasive method of examining myocardial work, which takes into account the effect of cardiac afterload on deformation and combines the overall longitudinal ...The ultrasound pressure-strain loop (PSL) technique is a non-invasive method of examining myocardial work, which takes into account the effect of cardiac afterload on deformation and combines the overall longitudinal strain force of the left ventricle with the changes in the left ventricular pressure, allowing earlier detection of possible subclinical cardiac damage in patients, and a more accurate and non-invasive assessment of the patient’s myocardial work performance. In this article, we will discuss the progress of PSL applications in cardiovascular diseases.展开更多
BACKGROUNDAlmost all cases of cervical cancer can be attributed to human papillomavirus(HPV) infection. The loop electrosurgical excision procedure (LEEP) is widelyused to treat HPV-mediated disease;thus, cervical can...BACKGROUNDAlmost all cases of cervical cancer can be attributed to human papillomavirus(HPV) infection. The loop electrosurgical excision procedure (LEEP) is widelyused to treat HPV-mediated disease;thus, cervical cancer is highly preventable.However, LEEP does not necessarily clear HPV rapidly and may affect theaccuracy of the results of ThinPrep cytology test (TCT) and cervical biopsy due tothe formation of cervical scars.CASE SUMMARYA 40-year-old woman underwent LEEP for cervical intraepithelial neoplasia grade1 approximately 10 years ago. Subsequent standard cervical cancer screeningsuggested persistent HPV-52 infection, but TCT results were negative. Cervicalbiopsy under colposcopy was performed thrice over a 10-year period, yieldingnegative pathology results. She developed abnormal vaginal bleeding after sexualactivity, persisting for approximately 1 year, and underwent hysteroscopy in ourhospital. Histopathologic evaluation confirmed adenocarcinoma in situ of theuterine cervix.CONCLUSIONPatients with long-term persistent, high-risk HPV infection and negative pathologyresults of cervical biopsy after LEEP are at risk of cervical cancer. Hysteroscopicresection of cervical canal tissue is recommended as a supplement tocervical biopsy because it helps define the lesion site and may yield a pathologicdiagnosis.展开更多
By employing metal oxides as oxygen carriers,chemical looping demonstrates its effectiveness in transferring oxygen between reduction and oxidation environments to partially oxidize fuels into syngas and convert CO_(2...By employing metal oxides as oxygen carriers,chemical looping demonstrates its effectiveness in transferring oxygen between reduction and oxidation environments to partially oxidize fuels into syngas and convert CO_(2)into CO.Generally,NiFe_(2_)O_(4)oxygen carriers have demonstrated remarkable efficiency in chemical looping CO_(2)conversion.Nevertheless,the intricate process of atomic migration and evolution within the internal structure of bimetallic oxygen carriers during continuous high‐temperature redox cycling remains unclear.Consequently,the lack of a fundamental understanding of the complex ionic migration and oxygen transfer associated with energy conversion processes hampers the design of high‐performance oxygen carriers.Thus,in this study,we employed in situ characterization techniques and theoretical calculations to investigate the ion migration behavior and structural evolution in the bulk of NiFe_(2_)O_(4)oxygen carriers during H2 reduction and CO_(2)/lab air oxidation cycles.We discovered that during the H2 reduction step,lattice oxygen rapidly migrates to vacancy layers to replenish consumed active oxygen species,while Ni leaches from the material and migrates to the surface.During the CO_(2)splitting step,Ni migrates toward the core of the bimetallic oxygen carrier,forming Fe–Ni alloys.During the air oxidation step,Fe–Ni migrates outward,creating a hollow structure owing to the Kirkendall effect triggered by the swift transfer of lattice oxygen.The metal atom migration paths depend on the oxygen transfer rates.These discoveries highlight the significance of regulating the release–recovery rate of lattice oxygen to uphold the structures and reactivity of oxygen carriers.This work offers a comprehensive understanding of the oxidation/reduction‐driven atomic interdiffusion behavior of bimetallic oxygen carriers.展开更多
Background: Cervical Intraepithelial neoplasia treatments have become essential interventions to manage cervical lesions. Majority of the recipients of these treatments are women within the reproductive age group, who...Background: Cervical Intraepithelial neoplasia treatments have become essential interventions to manage cervical lesions. Majority of the recipients of these treatments are women within the reproductive age group, who according to literature may be at risk of adverse pregnancy outcomes. This pilot study is part of a study investigating adverse pregnancy outcomes among women who received Cryotherapy, Thermal ablation and Loop Electrosurgical Excision Procedure compared to the untreated women in Zambia. Materials and Methods: This descriptive study analyzed records of 886 (n = 443 treated and n = 443 untreated) women aged 15 - 49 years. The women were either screened with Visual Inspection with Acetic Acid or treated for Cervical Intraepithelial neoplasia at the Adult Infectious Disease Centre between January 2010 and December 2020. Women meeting the criteria were identified using the Visual Inspection with Acetic Acid screening records and telephone interviews to obtain the adverse pregnancy outcome experienced. Data were analysed using STATA version 16 to determine the prevalence and obtain frequency distribution of outcomes of interest. Univariate and multivariable binary logistic regression estimated odds of adverse pregnancy outcomes across the three treatments. Results: The respondents were aged 15 to 49 years. Adverse pregnancy outcomes were observed to be more prevalent in the treatment group (18.5%) compared to the untreated group (5.4%). Normal pregnancy outcomes were lower in the treated (46.3%;n = 443) than the untreated (53.7%;n = 443). The treated group accounted for the majority of abortions (85.2%), prolonged labour (85.7%) and low birth weight (80%), whereas, the untreated accounted for the majority of still births (72.7%). Women treated with cryotherapy (aOR = 2.43, 95% CI = 1.32 - 4.49, p = 0.004), thermal ablation (aOR = 6.37, 95% CI = 0.99 - 41.2, p = 0.052) and Loop Electrosurgical Excision Procedure (aOR = 9.67, 95% CI = 2.17 - 43.1, p = 0.003) had two-, six- and ten-times higher odds of adverse pregnancy outcomes respectively, relative to women who required no treatment. Conclusion: Adverse pregnancy outcomes are prevalent among women who have received treatment in Zambia. The findings indicate that treating Cervical Intraepithelial Neoplasia has been linked to higher chances of experiencing abortion, delivering low birth weight babies and enduring prolonged labor that may result in a caesarean section delivery. Cervical neoplasia treatments, particularly Loop Electrosurgical Excision Procedure, are associated with significantly increased odds of adverse pregnancy outcomes. It is essential to include information about prior Cervical Intraepithelial neoplasia treatment outcomes in obstetric care.展开更多
Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and ...Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and mitigate climate change.In this process,a metal oxide is used as oxygen carrier in a dual fluidized bed to generate clean CO_(2) via combustion of biomass.Most commonly,natural ores or synthetic materials are used as oxygen carrier whereas both must meet special requirements for the conversion of solid fuels.Synthetic oxygen carriers are characterized by higher reactivity at the expense of higher costs versus the lower-cost natural ores.To determine the viability of both possibilities,a techno-economic comparison of a synthetic material based on manganese,iron,and copper to the natural ore ilmenite was conducted.The synthetic oxygen carrier was characterized and tested in a pilot plant,where high combustion efficiencies up to 98.4%and carbon capture rates up to 98.5%were reached.The techno-economic assessment resulted in CO_(2) capture costs of 75 and 40€/tCO_(2) for the synthetic and natural ore route respectively,whereas a sensitivity analysis showed the high impact of production costs and attrition rates of the synthetic material.The synthetic oxygen carrier could break even with the natural ore in case of lower production costs and attrition rates,which could be reached by adapting the production process and recycling material.By comparison to state-of-the-art technologies,it is demonstrated that both routes are viable and the capture cost of CO_(2) could be reduced by implementing the chemical looping combustion technology.展开更多
Biomass,recognized as renewable green coal,is pivotal for energy conservation,emission reduction,and dualcarbon objectives.Chemical looping gasification,an innovative technology,aims to enhance biomass utilization eff...Biomass,recognized as renewable green coal,is pivotal for energy conservation,emission reduction,and dualcarbon objectives.Chemical looping gasification,an innovative technology,aims to enhance biomass utilization efficiency.Using metal oxides as oxygen carriers regulates the oxygen-to-fuel ratio to optimize synthesis product yields.This review examines various oxygen carriers and their roles in chemical looping biomass gasification,including natural iron ore types,industrial by-products,cerium oxide-based carriers,and core-shell structures.The catalytic,kinetic,and phase transfer properties of iron-based oxygen carriers are analyzed,and their catalytic cracking capabilities are explored.Molecular interactions are elucidated and system performance is optimized by providing insights into chemical looping reaction mechanisms and strategies to improve carrier efficiency,along with discussing advanced techniques such as density functional theory(DFT)and reactive force field(ReaxFF)molecular dynamics(MD).This paper serves as a roadmap for advancing chemical looping gasification towards sustainable energy goals.展开更多
BACKGROUND The intrapapillary capillary loop(IPCL)characteristics,visualized using magnifying endoscopy,are commonly assessed for preoperative evaluation of the infiltration depth of esophageal squamous cell carcinoma...BACKGROUND The intrapapillary capillary loop(IPCL)characteristics,visualized using magnifying endoscopy,are commonly assessed for preoperative evaluation of the infiltration depth of esophageal squamous cell carcinoma(ESCC).Japan Esophageal Society(JES)classification is the most widely used classification.Microvascular structural changes are evaluated by magnifying endoscopy for the presence or absence of each morphological factor:tortuosity,dilatation,irregular caliber,and different shapes.However,the pathological characteristics of IPCLs have not been thoroughly investigated,especially the microvascular structures corresponding to the deepest parts of the lesions'infiltration.AIM To investigate differences in pathological microvascular structures of ESCC,which correspond to the deepest parts of the lesions'infiltration.METHODS Patients with ESCC and precancerous lesions diagnosed at Peking University Third Hospital were enrolled between January 2019 and April 2023.Patients first underwent magnified endoscopic examination,followed by endoscopic submucosal dissection or surgical treatment.Pathological images were scanned using a threedimensional slice scanner,and the pathological structural differences in different types,according to the JES classification,were analyzed using nonparametric tests and t-tests.RESULTS The 35 lesions were divided into four groups according to the JES classification:A,B1,B2,and B3.Statistical analyses revealed significant differences(aP<0.05)in the short and long calibers,area,location,and density between types A and B.Notably,there were no significant differences in these parameters between types B1 and B2 and between types B2 and B3(P>0.05).However,significant differences in the short calibers,long calibers,and area of IPCL were observed between types B1 and B3(aP<0.05);no significant differences were found in the density or location(P>0.05).CONCLUSION Pathological structures of IPCLs in the deepest infiltrating regions differ among various IPCL types classified by the JES classification under magnifying endoscopy,especially between the types A and B.展开更多
Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added Ni...Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added NiO and its different loadings on Fe_(2)O_(3)/MgO were investigated.Then,a series of oxygen carriers were applied in the CL-ODH of the ethane cycle system.Brunauer-Emmett-Teller(BET),X-ray diffractometry(XRD),X-ray photoelection spectroscopy(XPS),and H2-temperature programmed reduction(TPR)were used to characterize the physicochemical properties of these oxygen carriers.It was confirmed that an interaction between NiO and Fe_(2)O_(3) occurred based on the XPS and H2-TPR results.Based on the CL-ODH activity performance tests conducted in a fixed-bed reactor,it was revealed that ethylene selectivity was significantly improved after NiO addition.Fe_(2)O_(3)-10%NiO/MgO showed the best activity performance with 93%ethane conversion and 50%ethylene selectivity at a reaction temperature of 650℃,atmospheric pressure,and space velocity of 7500 mL/(g·h).展开更多
In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communic...In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communication,and computing modules to support various requirements of robots.In the task process,different modules assist the robots to perform tasks in a closed-loop way,which is referred to as a sensing-communication-computing-control(SC3)loop.In this work,we investigate a UAV-aided system containing multiple SC^(3)loops,which leverages non-orthogonal multiple access(NOMA)for efficient resource sharing.We describe and compare three different modelling levels for the SC^(3)loop.Based on the entropy SC^(3)loop model,a sum linear quadratic regulator(LQR)control cost minimization problem is formulated by optimizing the communication power.Further for the assure-to-be-stable case,we show that the original problem can be approximated by a modified user fairness problem,and accordingly gain more insights into the optimal solutions.Simulation results demonstrate the performance gain of using NOMA in such task-oriented systems,as well as the superiority of our proposed closed-loop-oriented design.展开更多
基金supported by the National Natural Science Foundation of China under Grant 62034002 and 62374026.
文摘A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.
文摘The brain functions as a closed-loop system that continuously generates behavior in response to the external environment and adjusts actions based on the outcomes.Traditional research methodologies in neuroscience,especially those employed in brain imaging experiments,have mainly adopted an open-loop paradigm(Grosenick et al.,2015).Functional neural circuits are analyzed offline and subsequently tested through manipulation of neuronal activities within specific regions or with genetic markers.By establishing a closed-loop research paradigm,functional ensembles can be detected and tested in real time with temporal sequences.These functional ensembles,rather than brain regions or genetically labeled neural populations,serve as fundamental units of neural networks,offering valuable insights into the dissection of neural circuits.The closed-loop research paradigm also enables the capture of high-dimensional activities of internal brain dynamics and precise elucidation of physiological processes such as learning,decision-making,and sleep.
文摘[目的]研究庆阳驴养殖群体的遗传多样性与母系起源,了解其遗传信息,为保护庆阳驴种质资源、选育和遗传改良工作提供理论依据。[方法]随机选取133头庆阳驴,对其线粒体DNA(mitochondrial DNA,mtDNA)D-loop区序列进行PCR扩增、测序及比对,并探讨庆阳驴的遗传多样性与母系起源。[结果]在获得的520 bp D-loop碱基序列中,AT含量(57.3%)高于GC含量(42.8%),表现出碱基的偏倚性;检测到38个变异位点,包含8个碱基对的转换;其核苷酸多样性(Pi)、单倍型多样性(Hd)、平均核苷酸差异(K)分别为0.01591、0.895和8.274,与欧洲家驴和中国家驴研究的平均值相比较低,说明该驴品种核苷酸变异较为贫乏。庆阳驴mtDNA D-loop区存在35个单倍型,单倍型之间的遗传距离为0.002~0.042。系统进化结果显示,庆阳驴存在2个线粒体支系,表明其具有2个母系起源,且遗传距离表明,庆阳驴与克罗地亚家驴之间的遗传距离较近。[结论]本研究从分子水平初步揭示庆阳驴核苷酸变异比较贫乏,杂交程度高,mtDNA遗传多态性正逐步丧失,应加强庆阳驴品种的遗传资源保护工作。
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2021YFA0718300 and 2021YFA1400900)the National Natural Science Foundation of China(Grant Nos.11920101004,11934002,and 92365208)+1 种基金Science and Technology Major Project of Shanxi(Grant No.202101030201022)Space Application System of China Manned Space Program.
文摘Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping approach of a slave Raman laser within an optical phase-locked loop(OPLL),which finds practical application in an atomic gravimeter,where the OPLL frequently switches between near-resonance lasers and significantly detuned Raman lasers.The method merges the advantages of rapid and extensive frequency hopping with the OPLL’s inherent low phase noise,and exhibits a versatile range of applications in compact laser systems,promising advancements in portable instruments.
基金supported by the National Natural Science Foundation of China(No.U1967212)the Fundamental Research Funds for the Central Universities(No.2021MS032)the Nuclear Materials Innovation Foundation(No.WDZC-2023-AW-0305)。
文摘The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in the literature.The number density and average diameter of the dislocation loops obtained from the CD simulations are in good agreement with the experimental data obtained from transmission electron microscopy(TEM)observations of Fe~+-irradiated Solution Annealed 304,Cold Worked 316,and HR3 austenitic steels in the literature.The CD simulation results demonstrate that the diffusion of in-cascade interstitial clusters plays a major role in the dislocation loop density and dislocation loop growth;in particular,for the HR3 austenitic steel,the CD model has verified the effect of temperature on the density and size of the dislocation loops.
基金financially supported by the National Natural Science Foundation of China (Nos. 52174279, U2202251, and 52266008)Applied Basic Research Program of Yunnan Province for Distinguished Young Scholars (No. 202201AV070004)+1 种基金Central Guiding Local Science and Technology Development Fund (No. 202207AA110001)the Yunnan Fundamental Research Projects (No. 202301AU070027, 202401AT070388)
文摘Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modulate both the activity and resistance to sulfur poisoning by dual substitution of Mo and Ni ions with the Fe-sites of LaFeO_(3)perovskite.It is found that partial substitution of Ni for Fe substantially improves the activity of LaFeO_(3)perovskite,while Ni particles prefer to grow and react with H_(2)S during the long-term successive redox process,resulting in the deactivation of oxygen carriers.With the presence of Mo in LaNi_(0.05)Fe_(0.95)O_(3−σ)perovskite,H_(2)S preferentially reacts with Mo to generate MoS_(2),and then the CO_(2)oxidation can regenerate Mo via removing sulfur.In addition,Mo can inhibit the accumulation and growth of Ni,which helps to improve the redox stability of oxygen carriers.The LaNi_(0.05)Mo_(0.07)Fe_(0.88)O_(3−σ)oxygen carrier exhibits stable and excellent performance,with the CH_(4)conversion higher than 90%during the 50 redox cycles in the presence of 50 ppm H_(2)S at 800℃.This work highlights a synergistic effect in the perovskite oxides induced by dual substitution of different cations for the development of high-performance oxygen carriers with excellent sulfur tolerance.
基金National Natural Science Foundation of China(Grant Nos:22038011,51976168)K.C.Wong Education Foundation,the Natural Science Basic Research Program of Shaanxi(Program No.2021JLM-17)+1 种基金Programme of Introducing Talents of Discipline to Universities(B23025)Innovation Capability Support Program of Shaanxi(Program Nos:2023KJXX-004,2023-CX-TD-26,2022KXJ-126).
文摘To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling strategy was adopted to decouple the biomass gasification process,and the composite oxygen carrier was prepared by embedding Fe_(2)O_(3) in molecular sieve SBA-16 for the chemical looping reforming process of pyrolysis micromolecular model compound methane,which was expected to realize the directional reforming of pyrolysis volatiles to prepare hydrogen-rich syngas.Thermodynamic analysis of the reaction system was carried out based on the Gibbs free energy minimization method,and the reforming performance was evaluated by a fixed bed reactor,and the kinetic parameters were solved based on the gas–solid reaction model.Thermodynamic analysis verified the feasibility of the reaction and provided theoretical guidance for experimental design.The experimental results showed that the reaction performance of Fe_(2)O_(3)@SBA-16 was compared with that of pure Fe_(2)O_(3) and Fe_(2)O_(3)@SBA-15,and the syngas yield was increased by 55.3%and 20.7%respectively,and it had good cycle stability.Kinetic analysis showed that the kinetic model changed from three-dimensional diffusion to first-order reaction with the increase of temperature.The activation energy was 192.79 kJ/mol by fitting.This paper provides basic data for the directional preparation of hydrogen-rich syngas from biomass and the design of oxygen carriers for pyrolysis of all-component chemical looping reforming.
基金sponsored by the Graduate Student Research and Innovation Fund of Xinyang Normal University under No.2024KYJJ012.
文摘In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field,and the nth-order discretization formulation of the boundary integral equation is derived.In addition,the computation of loop subdivision surfaces and the subdivision rules are introduced.In order to confirm the effectiveness of the algorithm,the computed results are contrasted and analyzed with the results under Monte Carlo simulations(MCs)through several numerical examples.
文摘The ultrasound pressure-strain loop (PSL) technique is a non-invasive method of examining myocardial work, which takes into account the effect of cardiac afterload on deformation and combines the overall longitudinal strain force of the left ventricle with the changes in the left ventricular pressure, allowing earlier detection of possible subclinical cardiac damage in patients, and a more accurate and non-invasive assessment of the patient’s myocardial work performance. In this article, we will discuss the progress of PSL applications in cardiovascular diseases.
基金2024 Natural Science Joint Foundation of Zhejiang Province,No.LBY24H040007.
文摘BACKGROUNDAlmost all cases of cervical cancer can be attributed to human papillomavirus(HPV) infection. The loop electrosurgical excision procedure (LEEP) is widelyused to treat HPV-mediated disease;thus, cervical cancer is highly preventable.However, LEEP does not necessarily clear HPV rapidly and may affect theaccuracy of the results of ThinPrep cytology test (TCT) and cervical biopsy due tothe formation of cervical scars.CASE SUMMARYA 40-year-old woman underwent LEEP for cervical intraepithelial neoplasia grade1 approximately 10 years ago. Subsequent standard cervical cancer screeningsuggested persistent HPV-52 infection, but TCT results were negative. Cervicalbiopsy under colposcopy was performed thrice over a 10-year period, yieldingnegative pathology results. She developed abnormal vaginal bleeding after sexualactivity, persisting for approximately 1 year, and underwent hysteroscopy in ourhospital. Histopathologic evaluation confirmed adenocarcinoma in situ of theuterine cervix.CONCLUSIONPatients with long-term persistent, high-risk HPV infection and negative pathologyresults of cervical biopsy after LEEP are at risk of cervical cancer. Hysteroscopicresection of cervical canal tissue is recommended as a supplement tocervical biopsy because it helps define the lesion site and may yield a pathologicdiagnosis.
基金National Natural Science Foundation of China,Grant/Award Numbers:52076209,52006224,52106285,22179027Foundation and Applied Foundation Research of Guangdong Province,Grant/Award Number:2022B1515020045+1 种基金Natural Science Foundation of Guangxi Province,Grant/Award Number:2021GXNSFAA075036Young Talent Support Project of Guangzhou Association for Science and Technology,Grant/Award Number:QT‐2023‐042。
文摘By employing metal oxides as oxygen carriers,chemical looping demonstrates its effectiveness in transferring oxygen between reduction and oxidation environments to partially oxidize fuels into syngas and convert CO_(2)into CO.Generally,NiFe_(2_)O_(4)oxygen carriers have demonstrated remarkable efficiency in chemical looping CO_(2)conversion.Nevertheless,the intricate process of atomic migration and evolution within the internal structure of bimetallic oxygen carriers during continuous high‐temperature redox cycling remains unclear.Consequently,the lack of a fundamental understanding of the complex ionic migration and oxygen transfer associated with energy conversion processes hampers the design of high‐performance oxygen carriers.Thus,in this study,we employed in situ characterization techniques and theoretical calculations to investigate the ion migration behavior and structural evolution in the bulk of NiFe_(2_)O_(4)oxygen carriers during H2 reduction and CO_(2)/lab air oxidation cycles.We discovered that during the H2 reduction step,lattice oxygen rapidly migrates to vacancy layers to replenish consumed active oxygen species,while Ni leaches from the material and migrates to the surface.During the CO_(2)splitting step,Ni migrates toward the core of the bimetallic oxygen carrier,forming Fe–Ni alloys.During the air oxidation step,Fe–Ni migrates outward,creating a hollow structure owing to the Kirkendall effect triggered by the swift transfer of lattice oxygen.The metal atom migration paths depend on the oxygen transfer rates.These discoveries highlight the significance of regulating the release–recovery rate of lattice oxygen to uphold the structures and reactivity of oxygen carriers.This work offers a comprehensive understanding of the oxidation/reduction‐driven atomic interdiffusion behavior of bimetallic oxygen carriers.
文摘Background: Cervical Intraepithelial neoplasia treatments have become essential interventions to manage cervical lesions. Majority of the recipients of these treatments are women within the reproductive age group, who according to literature may be at risk of adverse pregnancy outcomes. This pilot study is part of a study investigating adverse pregnancy outcomes among women who received Cryotherapy, Thermal ablation and Loop Electrosurgical Excision Procedure compared to the untreated women in Zambia. Materials and Methods: This descriptive study analyzed records of 886 (n = 443 treated and n = 443 untreated) women aged 15 - 49 years. The women were either screened with Visual Inspection with Acetic Acid or treated for Cervical Intraepithelial neoplasia at the Adult Infectious Disease Centre between January 2010 and December 2020. Women meeting the criteria were identified using the Visual Inspection with Acetic Acid screening records and telephone interviews to obtain the adverse pregnancy outcome experienced. Data were analysed using STATA version 16 to determine the prevalence and obtain frequency distribution of outcomes of interest. Univariate and multivariable binary logistic regression estimated odds of adverse pregnancy outcomes across the three treatments. Results: The respondents were aged 15 to 49 years. Adverse pregnancy outcomes were observed to be more prevalent in the treatment group (18.5%) compared to the untreated group (5.4%). Normal pregnancy outcomes were lower in the treated (46.3%;n = 443) than the untreated (53.7%;n = 443). The treated group accounted for the majority of abortions (85.2%), prolonged labour (85.7%) and low birth weight (80%), whereas, the untreated accounted for the majority of still births (72.7%). Women treated with cryotherapy (aOR = 2.43, 95% CI = 1.32 - 4.49, p = 0.004), thermal ablation (aOR = 6.37, 95% CI = 0.99 - 41.2, p = 0.052) and Loop Electrosurgical Excision Procedure (aOR = 9.67, 95% CI = 2.17 - 43.1, p = 0.003) had two-, six- and ten-times higher odds of adverse pregnancy outcomes respectively, relative to women who required no treatment. Conclusion: Adverse pregnancy outcomes are prevalent among women who have received treatment in Zambia. The findings indicate that treating Cervical Intraepithelial Neoplasia has been linked to higher chances of experiencing abortion, delivering low birth weight babies and enduring prolonged labor that may result in a caesarean section delivery. Cervical neoplasia treatments, particularly Loop Electrosurgical Excision Procedure, are associated with significantly increased odds of adverse pregnancy outcomes. It is essential to include information about prior Cervical Intraepithelial neoplasia treatment outcomes in obstetric care.
文摘Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and mitigate climate change.In this process,a metal oxide is used as oxygen carrier in a dual fluidized bed to generate clean CO_(2) via combustion of biomass.Most commonly,natural ores or synthetic materials are used as oxygen carrier whereas both must meet special requirements for the conversion of solid fuels.Synthetic oxygen carriers are characterized by higher reactivity at the expense of higher costs versus the lower-cost natural ores.To determine the viability of both possibilities,a techno-economic comparison of a synthetic material based on manganese,iron,and copper to the natural ore ilmenite was conducted.The synthetic oxygen carrier was characterized and tested in a pilot plant,where high combustion efficiencies up to 98.4%and carbon capture rates up to 98.5%were reached.The techno-economic assessment resulted in CO_(2) capture costs of 75 and 40€/tCO_(2) for the synthetic and natural ore route respectively,whereas a sensitivity analysis showed the high impact of production costs and attrition rates of the synthetic material.The synthetic oxygen carrier could break even with the natural ore in case of lower production costs and attrition rates,which could be reached by adapting the production process and recycling material.By comparison to state-of-the-art technologies,it is demonstrated that both routes are viable and the capture cost of CO_(2) could be reduced by implementing the chemical looping combustion technology.
基金supported by the National Natural Science Foundation of China(52160013,51768054)Inner Mongolia Autonomous Region“Grassland Talent”Science Fund Program(CYY012057)+2 种基金Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT22062)Inner Mongolia Natural Science Foundation(2021LHMS05026)Inner Mongolia University Research Program(2023RCTD018,2023YXX8023,2024YXX5027,2023YXX8023,2024YXX5027).
文摘Biomass,recognized as renewable green coal,is pivotal for energy conservation,emission reduction,and dualcarbon objectives.Chemical looping gasification,an innovative technology,aims to enhance biomass utilization efficiency.Using metal oxides as oxygen carriers regulates the oxygen-to-fuel ratio to optimize synthesis product yields.This review examines various oxygen carriers and their roles in chemical looping biomass gasification,including natural iron ore types,industrial by-products,cerium oxide-based carriers,and core-shell structures.The catalytic,kinetic,and phase transfer properties of iron-based oxygen carriers are analyzed,and their catalytic cracking capabilities are explored.Molecular interactions are elucidated and system performance is optimized by providing insights into chemical looping reaction mechanisms and strategies to improve carrier efficiency,along with discussing advanced techniques such as density functional theory(DFT)and reactive force field(ReaxFF)molecular dynamics(MD).This paper serves as a roadmap for advancing chemical looping gasification towards sustainable energy goals.
基金Supported by Beijing Science and Technology Development Program(Medical and Pharmaceutical Science Project),No.7232200.
文摘BACKGROUND The intrapapillary capillary loop(IPCL)characteristics,visualized using magnifying endoscopy,are commonly assessed for preoperative evaluation of the infiltration depth of esophageal squamous cell carcinoma(ESCC).Japan Esophageal Society(JES)classification is the most widely used classification.Microvascular structural changes are evaluated by magnifying endoscopy for the presence or absence of each morphological factor:tortuosity,dilatation,irregular caliber,and different shapes.However,the pathological characteristics of IPCLs have not been thoroughly investigated,especially the microvascular structures corresponding to the deepest parts of the lesions'infiltration.AIM To investigate differences in pathological microvascular structures of ESCC,which correspond to the deepest parts of the lesions'infiltration.METHODS Patients with ESCC and precancerous lesions diagnosed at Peking University Third Hospital were enrolled between January 2019 and April 2023.Patients first underwent magnified endoscopic examination,followed by endoscopic submucosal dissection or surgical treatment.Pathological images were scanned using a threedimensional slice scanner,and the pathological structural differences in different types,according to the JES classification,were analyzed using nonparametric tests and t-tests.RESULTS The 35 lesions were divided into four groups according to the JES classification:A,B1,B2,and B3.Statistical analyses revealed significant differences(aP<0.05)in the short and long calibers,area,location,and density between types A and B.Notably,there were no significant differences in these parameters between types B1 and B2 and between types B2 and B3(P>0.05).However,significant differences in the short calibers,long calibers,and area of IPCL were observed between types B1 and B3(aP<0.05);no significant differences were found in the density or location(P>0.05).CONCLUSION Pathological structures of IPCLs in the deepest infiltrating regions differ among various IPCL types classified by the JES classification under magnifying endoscopy,especially between the types A and B.
文摘Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added NiO and its different loadings on Fe_(2)O_(3)/MgO were investigated.Then,a series of oxygen carriers were applied in the CL-ODH of the ethane cycle system.Brunauer-Emmett-Teller(BET),X-ray diffractometry(XRD),X-ray photoelection spectroscopy(XPS),and H2-temperature programmed reduction(TPR)were used to characterize the physicochemical properties of these oxygen carriers.It was confirmed that an interaction between NiO and Fe_(2)O_(3) occurred based on the XPS and H2-TPR results.Based on the CL-ODH activity performance tests conducted in a fixed-bed reactor,it was revealed that ethylene selectivity was significantly improved after NiO addition.Fe_(2)O_(3)-10%NiO/MgO showed the best activity performance with 93%ethane conversion and 50%ethylene selectivity at a reaction temperature of 650℃,atmospheric pressure,and space velocity of 7500 mL/(g·h).
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFA0711301in part by the National Natural Science Foundation of China under Grant 62341110, Grant U22A2002, and Grant 62025110in part by the Suzhou Science and Technology Project
文摘In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communication,and computing modules to support various requirements of robots.In the task process,different modules assist the robots to perform tasks in a closed-loop way,which is referred to as a sensing-communication-computing-control(SC3)loop.In this work,we investigate a UAV-aided system containing multiple SC^(3)loops,which leverages non-orthogonal multiple access(NOMA)for efficient resource sharing.We describe and compare three different modelling levels for the SC^(3)loop.Based on the entropy SC^(3)loop model,a sum linear quadratic regulator(LQR)control cost minimization problem is formulated by optimizing the communication power.Further for the assure-to-be-stable case,we show that the original problem can be approximated by a modified user fairness problem,and accordingly gain more insights into the optimal solutions.Simulation results demonstrate the performance gain of using NOMA in such task-oriented systems,as well as the superiority of our proposed closed-loop-oriented design.