期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
Soil liquefaction assessment by using hierarchical Gaussian Process model with integrated feature and instance based domain adaption for multiple data sources
1
作者 Hongwei Guo Timon Rabczuk +3 位作者 Yanfei Zhu Hanyin Cui Chang Su Xiaoying Zhuang 《AI in Civil Engineering》 2022年第1期50-81,共32页
For soil liquefaction prediction from multiple data sources,this study designs a hierarchical machine learning model based on deep feature extraction and Gaussian Process with integrated domain adaption techniques.The... For soil liquefaction prediction from multiple data sources,this study designs a hierarchical machine learning model based on deep feature extraction and Gaussian Process with integrated domain adaption techniques.The proposed model first combines deep fisher discriminant analysis(DDA)and Gaussian Process(GP)in a unified framework,so as to extract deep discriminant features and enhance the model performance for classification.To deliver fair evalu-ation,the classifier is validated in the approach of repeated stratified K-fold cross validation.Then,five different data resources are presented to further verify the model’s robustness and generality.To reuse the gained knowledge from the existing data sources and enhance the generality of the predictive model,a domain adaption approach is formu-lated by combing a deep Autoencoder with TrAdaboost,to achieve good performance over different data records from both the in-situ and laboratory observations.After comparing the proposed model with classical machine learn-ing models,such as supported vector machine,as well as with the state-of-art ensemble learning models,it is found that,regarding seismic-induced liquefaction prediction,the predicted results of this model show high accuracy on all datasets both in the repeated cross validation and Wilcoxon signed rank test.Finally,a sensitivity analysis is made on the DDA-GP model to reveal the features that may significantly affect the liquefaction. 展开更多
关键词 LIQUEFACTION Machine learning Deep fisher discriminant analysis Gaussian Process Ensemble methods domain adaption
原文传递
Tomato detection method using domain adaptive learning for dense planting environments
2
作者 LI Yang HOU Wenhui +4 位作者 YANG Huihuang RAO Yuan WANG Tan JIN Xiu ZHU Jun 《农业工程学报》 EI CAS CSCD 北大核心 2024年第13期134-145,共12页
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ... This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits. 展开更多
关键词 PLANTS MODELS domain adaptive tomato detection illumination variation semi-supervised learning dense planting environments
下载PDF
Bearing Fault Diagnosis Based on Deep Discriminative Adversarial Domain Adaptation Neural Networks
3
作者 Jinxi Guo Kai Chen +5 位作者 Jiehui Liu Yuhao Ma Jie Wu Yaochun Wu Xiaofeng Xue Jianshen Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2619-2640,共22页
Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received in... Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasingattention and achieved some results. It might lead to insufficient performance for using transfer learning alone andcause misclassification of target samples for domain bias when building deep models to learn domain-invariantfeatures. To address the above problems, a deep discriminative adversarial domain adaptation neural networkfor the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are firstlyconverted into frequency domain data by Fast Fourier Transform, and an improved deep convolutional neuralnetwork with wide first-layer kernels is used as a feature extractor to extract deep fault features. Then, domaininvariant features are learned from the fault data with correlation alignment-based domain adversarial training.Furthermore, to enhance the discriminative property of features, discriminative feature learning is embeddedinto this network to make the features compact, as well as separable between classes within the class. Finally, theperformance and anti-noise capability of the proposedmethod are evaluated using two sets of bearing fault datasets.The results demonstrate that the proposed method is capable of handling domain offset caused by differentworkingconditions and maintaining more than 97.53% accuracy on various transfer tasks. Furthermore, the proposedmethod can achieve high diagnostic accuracy under varying noise levels. 展开更多
关键词 Fault diagnosis transfer learning domain adaptation discriminative feature learning correlation alignment
下载PDF
Inversion of Seabed Geotechnical Properties in the Arctic Chukchi Deep Sea Basin Based on Time Domain Adaptive Search Matching Algorithm
4
作者 AN Long XU Chong +5 位作者 XING Junhui GONG Wei JIANG Xiaodian XU Haowei LIU Chuang YANG Boxue 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期933-942,共10页
The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained... The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained based on the chirp sub-bottom profiler data collected in the Chukchi Plateau area during the 11th Arctic Expedition of China.The time-domain adaptive search matching algorithm was used and validated on our established theoretical model.The misfit between the inversion result and the theoretical model is less than 0.067%.The grain size was calculated according to the empirical relationship between the acoustic impedance and the grain size of the sediment.The average acoustic impedance of sub-seafloor strata is 2.5026×10^(6) kg(s m^(2))^(-1)and the average grain size(θvalue)of the seafloor surface sediment is 7.1498,indicating the predominant occurrence of very fine silt sediment in the study area.Comparison of the inversion results and the laboratory measurements of nearby borehole samples shows that they are in general agreement. 展开更多
关键词 time domain adaptive search matching algorithm acoustic impedance inversion sedimentary grain size Arctic Ocean Chukchi Deep Sea Basin
下载PDF
Low-Rank Optimal Transport for Robust Domain Adaptation
5
作者 Bingrong Xu Jianhua Yin +2 位作者 Cheng Lian Yixin Su Zhigang Zeng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1667-1680,共14页
When encountering the distribution shift between the source(training) and target(test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain ada... When encountering the distribution shift between the source(training) and target(test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain adaptation research has achieved a lot of success both in theory and practice under the assumption that all the examples in the source domain are welllabeled and of high quality. However, the methods consistently lose robustness in noisy settings where data from the source domain have corrupted labels or features which is common in reality. Therefore, robust domain adaptation has been introduced to deal with such problems. In this paper, we attempt to solve two interrelated problems with robust domain adaptation:distribution shift across domains and sample noises of the source domain. To disentangle these challenges, an optimal transport approach with low-rank constraints is applied to guide the domain adaptation model training process to avoid noisy information influence. For the domain shift problem, the optimal transport mechanism can learn the joint data representations between the source and target domains using a measurement of discrepancy and preserve the discriminative information. The rank constraint on the transport matrix can help recover the corrupted subspace structures and eliminate the noise to some extent when dealing with corrupted source data. The solution to this relaxed and regularized optimal transport framework is a convex optimization problem that can be solved using the Augmented Lagrange Multiplier method, whose convergence can be mathematically proved. The effectiveness of the proposed method is evaluated through extensive experiments on both synthetic and real-world datasets. 展开更多
关键词 domain adaptation low-rank constraint noise corruption optimal transport
下载PDF
Diabetic retinopathy identification based on multi-sourcefree domain adaptation
6
作者 Guang-Hua Zhang Guang-Ping Zhuo +3 位作者 Zhao-Xia Zhang Bin Sun Wei-Hua Yang Shao-Chong Zhang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第7期1193-1204,共12页
AIM:To address the challenges of data labeling difficulties,data privacy,and necessary large amount of labeled data for deep learning methods in diabetic retinopathy(DR)identification,the aim of this study is to devel... AIM:To address the challenges of data labeling difficulties,data privacy,and necessary large amount of labeled data for deep learning methods in diabetic retinopathy(DR)identification,the aim of this study is to develop a source-free domain adaptation(SFDA)method for efficient and effective DR identification from unlabeled data.METHODS:A multi-SFDA method was proposed for DR identification.This method integrates multiple source models,which are trained from the same source domain,to generate synthetic pseudo labels for the unlabeled target domain.Besides,a softmax-consistence minimization term is utilized to minimize the intra-class distances between the source and target domains and maximize the inter-class distances.Validation is performed using three color fundus photograph datasets(APTOS2019,DDR,and EyePACS).RESULTS:The proposed model was evaluated and provided promising results with respectively 0.8917 and 0.9795 F1-scores on referable and normal/abnormal DR identification tasks.It demonstrated effective DR identification through minimizing intra-class distances and maximizing inter-class distances between source and target domains.CONCLUSION:The multi-SFDA method provides an effective approach to overcome the challenges in DR identification.The method not only addresses difficulties in data labeling and privacy issues,but also reduces the need for large amounts of labeled data required by deep learning methods,making it a practical tool for early detection and preservation of vision in diabetic patients. 展开更多
关键词 diabetic retinopathy multisource-free domain adaptation pseudo-label generation softmaxconsistence minimization
下载PDF
Enhancing Unsupervised Domain Adaptation for Person Re-Identification with the Minimal Transfer Cost Framework
7
作者 Sheng Xu Shixiong Xiang +1 位作者 Feiyu Meng Qiang Wu 《Computers, Materials & Continua》 SCIE EI 2024年第9期4197-4218,共22页
In Unsupervised Domain Adaptation(UDA)for person re-identification(re-ID),the primary challenge is reducing the distribution discrepancy between the source and target domains.This can be achieved by implicitly or expl... In Unsupervised Domain Adaptation(UDA)for person re-identification(re-ID),the primary challenge is reducing the distribution discrepancy between the source and target domains.This can be achieved by implicitly or explicitly constructing an appropriate intermediate domain to enhance recognition capability on the target domain.Implicit construction is difficult due to the absence of intermediate state supervision,making smooth knowledge transfer from the source to the target domain a challenge.To explicitly construct the most suitable intermediate domain for the model to gradually adapt to the feature distribution changes from the source to the target domain,we propose the Minimal Transfer Cost Framework(MTCF).MTCF considers all scenarios of the intermediate domain during the transfer process,ensuring smoother and more efficient domain alignment.Our framework mainly includes threemodules:Intermediate Domain Generator(IDG),Cross-domain Feature Constraint Module(CFCM),and Residual Channel Space Module(RCSM).First,the IDG Module is introduced to generate all possible intermediate domains,ensuring a smooth transition of knowledge fromthe source to the target domain.To reduce the cross-domain feature distribution discrepancy,we propose the CFCM Module,which quantifies the difficulty of knowledge transfer and ensures the diversity of intermediate domain features and their semantic relevance,achieving alignment between the source and target domains by incorporating mutual information and maximum mean discrepancy.We also design the RCSM,which utilizes attention mechanism to enhance the model’s focus on personnel features in low-resolution images,improving the accuracy and efficiency of person re-ID.Our proposed method outperforms existing technologies in all common UDA re-ID tasks and improves the Mean Average Precision(mAP)by 2.3%in the Market to Duke task compared to the state-of-the-art(SOTA)methods. 展开更多
关键词 Person re-identification unsupervised domain adaptation attention mechanism mutual information maximum mean discrepancy
下载PDF
Complementary-Label Adversarial Domain Adaptation Fault Diagnosis Network under Time-Varying Rotational Speed and Weakly-Supervised Conditions
8
作者 Siyuan Liu Jinying Huang +2 位作者 Jiancheng Ma Licheng Jing Yuxuan Wang 《Computers, Materials & Continua》 SCIE EI 2024年第4期761-777,共17页
Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the mac... Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method. 展开更多
关键词 Time-varying rotational speed weakly-supervised fault diagnosis domain adaptation
下载PDF
Decoding of Raman spectroscopy-encoded suspension arrays based on the detail constraint cycle domain adaptive model
9
作者 Yu Yao Kaiwen Xue +3 位作者 Liwang Liu Shanshan Zhu Chengfeng Yue Yanhong Ji 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2022年第4期116-127,共12页
Previous studies have already shown that Raman spectroscopy can be used in the encoding of suspension array technology.However,almost all existing convolutional neural network-based decoding approaches rely on supervi... Previous studies have already shown that Raman spectroscopy can be used in the encoding of suspension array technology.However,almost all existing convolutional neural network-based decoding approaches rely on supervision with ground truth,and may not be well generalized to unseen datasets,which were collected under different experimental conditions,applying with the same coded material.In this study,we propose an improved model based on CyCADA,named as Detail constraint Cycle Domain Adaptive Model(DCDA).DCDA implements the clasification of unseen datasets through domain adaptation,adapts representations at the encode level with decoder-share,and enforces coding features while leveraging a feat loss.To improve detailed structural constraints,DCDA takes downsample connection and skips connection.Our model improves the poor generalization of existing models and saves the cost of the labeling process for unseen target datasets.Compared with other models,extensive experiments and ablation studies show the superiority of DCDA in terms of classification stability and generalization.The model proposed by the research achieves a classification with an accuracy of 100%when applied in datasets,in which the spectrum in the source domain is far less than the target domain. 展开更多
关键词 domain adaption suspension arrays deep learning Raman spectrum generalization.
下载PDF
Multi-Modal Domain Adaptation Variational Autoencoder for EEG-Based Emotion Recognition 被引量:5
10
作者 Yixin Wang Shuang Qiu +3 位作者 Dan Li Changde Du Bao-Liang Lu Huiguang He 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第9期1612-1626,共15页
Traditional electroencephalograph(EEG)-based emotion recognition requires a large number of calibration samples to build a model for a specific subject,which restricts the application of the affective brain computer i... Traditional electroencephalograph(EEG)-based emotion recognition requires a large number of calibration samples to build a model for a specific subject,which restricts the application of the affective brain computer interface(BCI)in practice.We attempt to use the multi-modal data from the past session to realize emotion recognition in the case of a small amount of calibration samples.To solve this problem,we propose a multimodal domain adaptive variational autoencoder(MMDA-VAE)method,which learns shared cross-domain latent representations of the multi-modal data.Our method builds a multi-modal variational autoencoder(MVAE)to project the data of multiple modalities into a common space.Through adversarial learning and cycle-consistency regularization,our method can reduce the distribution difference of each domain on the shared latent representation layer and realize the transfer of knowledge.Extensive experiments are conducted on two public datasets,SEED and SEED-IV,and the results show the superiority of our proposed method.Our work can effectively improve the performance of emotion recognition with a small amount of labelled multi-modal data. 展开更多
关键词 Cycle-consistency domain adaptation electroencephalograph(EEG) multi modality variational autoencoder
下载PDF
Analyzing Cross-domain Transportation Big Data of New York City with Semi-supervised and Active Learning 被引量:4
11
作者 Huiyu Sun Suzanne McIntosh 《Computers, Materials & Continua》 SCIE EI 2018年第10期1-9,共9页
The majority of big data analytics applied to transportation datasets suffer from being too domain-specific,that is,they draw conclusions for a dataset based on analytics on the same dataset.This makes models trained ... The majority of big data analytics applied to transportation datasets suffer from being too domain-specific,that is,they draw conclusions for a dataset based on analytics on the same dataset.This makes models trained from one domain(e.g.taxi data)applies badly to a different domain(e.g.Uber data).To achieve accurate analyses on a new domain,substantial amounts of data must be available,which limits practical applications.To remedy this,we propose to use semi-supervised and active learning of big data to accomplish the domain adaptation task:Selectively choosing a small amount of datapoints from a new domain while achieving comparable performances to using all the datapoints.We choose the New York City(NYC)transportation data of taxi and Uber as our dataset,simulating different domains with 90%as the source data domain for training and the remaining 10%as the target data domain for evaluation.We propose semi-supervised and active learning strategies and apply it to the source domain for selecting datapoints.Experimental results show that our adaptation achieves a comparable performance of using all datapoints while using only a fraction of them,substantially reducing the amount of data required.Our approach has two major advantages:It can make accurate analytics and predictions when big datasets are not available,and even if big datasets are available,our approach chooses the most informative datapoints out of the dataset,making the process much more efficient without having to process huge amounts of data. 展开更多
关键词 Big data taxi and uber domain adaptation active learning semi-supervised learning
下载PDF
Explainable, Domain-Adaptive, and Federated Artificial Intelligence in Medicine 被引量:4
12
作者 Ahmad Chaddad Qizong Lu +5 位作者 Jiali Li Yousef Katib Reem Kateb Camel Tanougast Ahmed Bouridane Ahmed Abdulkadir 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第4期859-876,共18页
Artificial intelligence(AI)continues to transform data analysis in many domains.Progress in each domain is driven by a growing body of annotated data,increased computational resources,and technological innovations.In ... Artificial intelligence(AI)continues to transform data analysis in many domains.Progress in each domain is driven by a growing body of annotated data,increased computational resources,and technological innovations.In medicine,the sensitivity of the data,the complexity of the tasks,the potentially high stakes,and a requirement of accountability give rise to a particular set of challenges.In this review,we focus on three key methodological approaches that address some of the particular challenges in AI-driven medical decision making.1)Explainable AI aims to produce a human-interpretable justification for each output.Such models increase confidence if the results appear plausible and match the clinicians expectations.However,the absence of a plausible explanation does not imply an inaccurate model.Especially in highly non-linear,complex models that are tuned to maximize accuracy,such interpretable representations only reflect a small portion of the justification.2)Domain adaptation and transfer learning enable AI models to be trained and applied across multiple domains.For example,a classification task based on images acquired on different acquisition hardware.3)Federated learning enables learning large-scale models without exposing sensitive personal health information.Unlike centralized AI learning,where the centralized learning machine has access to the entire training data,the federated learning process iteratively updates models across multiple sites by exchanging only parameter updates,not personal health data.This narrative review covers the basic concepts,highlights relevant corner-stone and stateof-the-art research in the field,and discusses perspectives. 展开更多
关键词 domain adaptation explainable artificial intelligence federated learning
下载PDF
Deep Domain-Adversarial Anomaly Detection With One-Class Transfer Learning 被引量:1
13
作者 Wentao Mao Gangsheng Wang +1 位作者 Linlin Kou Xihui Liang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第2期524-546,共23页
Despite the big success of transfer learning techniques in anomaly detection,it is still challenging to achieve good transition of detection rules merely based on the preferred data in the anomaly detection with one-c... Despite the big success of transfer learning techniques in anomaly detection,it is still challenging to achieve good transition of detection rules merely based on the preferred data in the anomaly detection with one-class classification,especially for the data with a large distribution difference.To address this challenge,a novel deep one-class transfer learning algorithm with domain-adversarial training is proposed in this paper.First,by integrating a hypersphere adaptation constraint into domainadversarial neural network,a new hypersphere adversarial training mechanism is designed.Second,an alternative optimization method is derived to seek the optimal network parameters while pushing the hyperspheres built in the source domain and target domain to be as identical as possible.Through transferring oneclass detection rule in the adaptive extraction of domain-invariant feature representation,the end-to-end anomaly detection with one-class classification is then enhanced.Furthermore,a theoretical analysis about the model reliability,as well as the strategy of avoiding invalid and negative transfer,is provided.Experiments are conducted on two typical anomaly detection problems,i.e.,image recognition detection and online early fault detection of rolling bearings.The results demonstrate that the proposed algorithm outperforms the state-of-the-art methods in terms of detection accuracy and robustness. 展开更多
关键词 Anomaly detection domain adaptation domainadversarial training one-class classification transfer learning
下载PDF
Knowledge Transfer Learning via Dual Density Sampling for Resource-Limited Domain Adaptation 被引量:1
14
作者 Zefeng Zheng Luyao Teng +2 位作者 Wei Zhang Naiqi Wu Shaohua Teng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第12期2269-2291,共23页
Most existing domain adaptation(DA) methods aim to explore favorable performance under complicated environments by sampling.However,there are three unsolved problems that limit their efficiencies:ⅰ) they adopt global... Most existing domain adaptation(DA) methods aim to explore favorable performance under complicated environments by sampling.However,there are three unsolved problems that limit their efficiencies:ⅰ) they adopt global sampling but neglect to exploit global and local sampling simultaneously;ⅱ)they either transfer knowledge from a global perspective or a local perspective,while overlooking transmission of confident knowledge from both perspectives;and ⅲ) they apply repeated sampling during iteration,which takes a lot of time.To address these problems,knowledge transfer learning via dual density sampling(KTL-DDS) is proposed in this study,which consists of three parts:ⅰ) Dual density sampling(DDS) that jointly leverages two sampling methods associated with different views,i.e.,global density sampling that extracts representative samples with the most common features and local density sampling that selects representative samples with critical boundary information;ⅱ)Consistent maximum mean discrepancy(CMMD) that reduces intra-and cross-domain risks and guarantees high consistency of knowledge by shortening the distances of every two subsets among the four subsets collected by DDS;and ⅲ) Knowledge dissemination(KD) that transmits confident and consistent knowledge from the representative target samples with global and local properties to the whole target domain by preserving the neighboring relationships of the target domain.Mathematical analyses show that DDS avoids repeated sampling during the iteration.With the above three actions,confident knowledge with both global and local properties is transferred,and the memory and running time are greatly reduced.In addition,a general framework named dual density sampling approximation(DDSA) is extended,which can be easily applied to other DA algorithms.Extensive experiments on five datasets in clean,label corruption(LC),feature missing(FM),and LC&FM environments demonstrate the encouraging performance of KTL-DDS. 展开更多
关键词 Cross-domain risk dual density sampling intra-domain risk maximum mean discrepancy knowledge transfer learning resource-limited domain adaptation
下载PDF
Estimating the State of Health for Lithium-ion Batteries:A Particle Swarm Optimization-Assisted Deep Domain Adaptation Approach 被引量:1
15
作者 Guijun Ma Zidong Wang +4 位作者 Weibo Liu Jingzhong Fang Yong Zhang Han Ding Ye Yuan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第7期1530-1543,共14页
The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging t... The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging to estimate the SOHs in a personalized way.In this article,we present a novel particle swarm optimization-assisted deep domain adaptation(PSO-DDA)method to estimate the SOH of LIBs in a personalized manner,where a new domain adaptation strategy is put forward to reduce cross-domain distribution discrepancy.The standard PSO algorithm is exploited to automatically adjust the chosen hyperparameters of developed DDA-based method.The proposed PSODDA method is validated by extensive experiments on two LIB datasets with different battery chemistry materials,ambient temperatures and charge-discharge configurations.Experimental results indicate that the proposed PSO-DDA method surpasses the convolutional neural network-based method and the standard DDA-based method.The Py Torch implementation of the proposed PSO-DDA method is available at https://github.com/mxt0607/PSO-DDA. 展开更多
关键词 Deep transfer learning domain adaptation hyperparameter selection lithium-ion batteries(LIBs) particle swarm optimization state of health estimation(SOH)
下载PDF
Wavelet domain adaptive filtering algorithm for removing the seamless pipe noise contained in the magnetic flux leakage data 被引量:1
16
作者 韩文花 Que Peiwen 《High Technology Letters》 EI CAS 2006年第2期170-174,共5页
With the widespread application and fast development of gas and oil pipeline network in China, the pipeline inspection technology has been used more extensively. The magnetic flux leakage (MFL) method has establishe... With the widespread application and fast development of gas and oil pipeline network in China, the pipeline inspection technology has been used more extensively. The magnetic flux leakage (MFL) method has established itself as the most widely used in-line inspection technique for the evaluation of gas and oil pipelines. The MFL data obtained from seamless pipeline inspection is usually contaminated by the seamless pipe noise (SPN). SPN can in some cases completely mask MFL signals from certain type of defects, and therefore considerably reduces the detectability of the defect signals. In this paper, a new de-noising algorithm called wavelet domain adaptive filtering is proposed for removing the SPN contained in the MFL data. The new algorithm results from combining the wavelet transform with the adaptive filtering technique. Results from application of the proposed algorithm to the MFL data from field tests show that the proposed algorithm has good performance and considerably improves the detectability of the defect signals in the MFL data. 展开更多
关键词 pipeline inspection magnetic flux leakage data discrete wavelet transform wavelet domain adaptive filtering seamless pipe noise
下载PDF
Unsupervised Domain Adaptation Based on Discriminative Subspace Learning for Cross-Project Defect Prediction 被引量:1
17
作者 Ying Sun Yanfei Sun +4 位作者 Jin Qi Fei Wu Xiao-Yuan Jing Yu Xue Zixin Shen 《Computers, Materials & Continua》 SCIE EI 2021年第9期3373-3389,共17页
:Cross-project defect prediction(CPDP)aims to predict the defects on target project by using a prediction model built on source projects.The main problem in CPDP is the huge distribution gap between the source project... :Cross-project defect prediction(CPDP)aims to predict the defects on target project by using a prediction model built on source projects.The main problem in CPDP is the huge distribution gap between the source project and the target project,which prevents the prediction model from performing well.Most existing methods overlook the class discrimination of the learned features.Seeking an effective transferable model from the source project to the target project for CPDP is challenging.In this paper,we propose an unsupervised domain adaptation based on the discriminative subspace learning(DSL)approach for CPDP.DSL treats the data from two projects as being from two domains and maps the data into a common feature space.It employs crossdomain alignment with discriminative information from different projects to reduce the distribution difference of the data between different projects and incorporates the class discriminative information.Specifically,DSL first utilizes subspace learning based domain adaptation to reduce the distribution gap of data between different projects.Then,it makes full use of the class label information of the source project and transfers the discrimination ability of the source project to the target project in the common space.Comprehensive experiments on five projects verify that DSL can build an effective prediction model and improve the performance over the related competing methods by at least 7.10%and 11.08%in terms of G-measure and AUC. 展开更多
关键词 Cross-project defect prediction discriminative subspace learning unsupervised domain adaptation
下载PDF
Adaptive Graph Embedding With Consistency and Specificity for Domain Adaptation
18
作者 Shaohua Teng Zefeng Zheng +2 位作者 Naiqi Wu Luyao Teng Wei Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第11期2094-2107,共14页
Domain adaptation(DA) aims to find a subspace,where the discrepancies between the source and target domains are reduced. Based on this subspace, the classifier trained by the labeled source samples can classify unlabe... Domain adaptation(DA) aims to find a subspace,where the discrepancies between the source and target domains are reduced. Based on this subspace, the classifier trained by the labeled source samples can classify unlabeled target samples well.Existing approaches leverage Graph Embedding Learning to explore such a subspace. Unfortunately, due to 1) the interaction of the consistency and specificity between samples, and 2) the joint impact of the degenerated features and incorrect labels in the samples, the existing approaches might assign unsuitable similarity, which restricts their performance. In this paper, we propose an approach called adaptive graph embedding with consistency and specificity(AGE-CS) to cope with these issues. AGE-CS consists of two methods, i.e., graph embedding with consistency and specificity(GECS), and adaptive graph embedding(AGE).GECS jointly learns the similarity of samples under the geometric distance and semantic similarity metrics, while AGE adaptively adjusts the relative importance between the geometric distance and semantic similarity during the iterations. By AGE-CS,the neighborhood samples with the same label are rewarded,while the neighborhood samples with different labels are punished. As a result, compact structures are preserved, and advanced performance is achieved. Extensive experiments on five benchmark datasets demonstrate that the proposed method performs better than other Graph Embedding methods. 展开更多
关键词 Adaptive adjustment consistency and specificity domain adaptation graph embedding geometrical and semantic metrics
下载PDF
Prediction of film ratings based on domain adaptive transfer learning
19
作者 舒展 DUAN Yong 《High Technology Letters》 EI CAS 2023年第1期98-104,共7页
This paper examines the prediction of film ratings.Firstly,in the data feature engineering,feature construction is performed based on the original features of the film dataset.Secondly,the clustering algorithm is util... This paper examines the prediction of film ratings.Firstly,in the data feature engineering,feature construction is performed based on the original features of the film dataset.Secondly,the clustering algorithm is utilized to remove singular film samples,and feature selections are carried out.When solving the problem that film samples of the target domain are unlabelled,it is impossible to train a model and address the inconsistency in the feature dimension for film samples from the source domain.Therefore,the domain adaptive transfer learning model combined with dimensionality reduction algorithms is adopted in this paper.At the same time,in order to reduce the prediction error of models,the stacking ensemble learning model for regression is also used.Finally,through comparative experiments,the effectiveness of the proposed method is verified,which proves to be better predicting film ratings in the target domain. 展开更多
关键词 prediction of film rating domain adaptive transfer component analysis(TCA) correlation alignment(CORAL) stacking
下载PDF
Bilateral co-transfer for unsupervised domain adaptation
20
作者 Fuxiang Huang Jingru Fu Lei Zhang 《Journal of Automation and Intelligence》 2023年第4期204-217,共14页
Labeled data scarcity of an interested domain is often a serious problem in machine learning.Leveraging the labeled data from other semantic-related yet co-variate shifted source domain to facilitate the interested do... Labeled data scarcity of an interested domain is often a serious problem in machine learning.Leveraging the labeled data from other semantic-related yet co-variate shifted source domain to facilitate the interested domain is a consensus.In order to solve the domain shift between domains and reduce the learning ambiguity,unsupervised domain adaptation(UDA)greatly promotes the transferability of model parameters.However,the dilemma of over-fitting(negative transfer)and under-fitting(under-adaptation)is always an overlooked challenge and potential risk.In this paper,we rethink the shallow learning paradigm and this intractable over/under-fitting problem,and propose a safer UDA model,coined as Bilateral Co-Transfer(BCT),which is essentially beyond previous well-known unilateral transfer.With bilateral co-transfer between domains,the risk of over/under-fitting is therefore largely reduced.Technically,the proposed BCT is a symmetrical structure,with joint distribution discrepancy(JDD)modeled for domain alignment and category discrimination.Specifically,a symmetrical bilateral transfer(SBT)loss between source and target domains is proposed under the philosophy of mutual checks and balances.First,each target sample is represented by source samples with low-rankness constraint in a common subspace,such that the most informative and transferable source data can be used to alleviate negative transfer.Second,each source sample is symmetrically and sparsely represented by target samples,such that the most reliable target samples can be exploited to tackle underadaptation.Experiments on various benchmarks show that our BCT outperforms many previous outstanding work. 展开更多
关键词 Unsupervised domain adaptation Negative transfer Under-adaptation Image classification
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部