In this paper we derive a multi-choice TU game from r-replica of exchange economy with continuous, concave and monetary utility functions, and prove that the cores of the games converge to a subset of the set of Edgew...In this paper we derive a multi-choice TU game from r-replica of exchange economy with continuous, concave and monetary utility functions, and prove that the cores of the games converge to a subset of the set of Edgeworth equilibria of exchange economy as r approaches to infinity. We prove that the dominance core of each balanced multi-choice TU game, where each player has identical activity level r, coincides with the dominance core of its corresponding r-replica of exchange economy. We also give an extension of the concept of the cover of the game proposed by Shapley and Shubik (J Econ Theory 1: 9-25, 1969) to multi-choice TU games and derive some sufficient conditions for the nonemptyness of the core of multi-choice TU game by using the relationship among replica economies, multi-choice TU games and their covers.展开更多
基金Supported by the Natural Science Foundation of Hebei Province of China(A2014205152)
文摘In this paper we derive a multi-choice TU game from r-replica of exchange economy with continuous, concave and monetary utility functions, and prove that the cores of the games converge to a subset of the set of Edgeworth equilibria of exchange economy as r approaches to infinity. We prove that the dominance core of each balanced multi-choice TU game, where each player has identical activity level r, coincides with the dominance core of its corresponding r-replica of exchange economy. We also give an extension of the concept of the cover of the game proposed by Shapley and Shubik (J Econ Theory 1: 9-25, 1969) to multi-choice TU games and derive some sufficient conditions for the nonemptyness of the core of multi-choice TU game by using the relationship among replica economies, multi-choice TU games and their covers.