In the U.S.,Helicoverpa zea(Boddie)is a major pest targeted by both transgenic maize and cotton expressing Bacillus thuringiensis(Bt)proteins.Resistance of insect to Bt maize and cotton containing cry1A and cry2A gene...In the U.S.,Helicoverpa zea(Boddie)is a major pest targeted by both transgenic maize and cotton expressing Bacillus thuringiensis(Bt)proteins.Resistance of insect to Bt maize and cotton containing cry1A and cry2A genes has widely occurred in the U.S.In this study,two trials were performed to investigate larval survival and development of a Cry1A.105/Cry2Ab2 dual-protein resistant(VT2P-RR),a susceptible,and an F1 heterozygous(VT2P-RS)populations of H.zea on ears of nine Bt and three non-Bt maize hybrids.The Bt maize hybrids evaluated represent five common pyramided traits expressing two or three of the Cry1A.105,Cry1Ab,Cry1F,Cry2Ab2,and Vip3Aa20 proteins.In the laboratory,neonates of the three H.zea populations were inoculated on silks of ears collected from maize at R1-R2 plant stages;and larval survivorship was checked 10 d after neonate release.All three insect populations survived normally on non-Bt maize ears.Varied numbers of VT2P-RR and VT2P-RS survived on ears of Cry1A.105/Cry2Ab2 maize,while all larvae of the three populations died or could not develop on ears of Vip3Aa20-expressing maize.The results demonstrated that the dual-protein resistant H.zea was not cross-resistant to Vip3Aa20-expressing maize,and thus traits with vip3Aa20 gene should be effective to manage Cry1A.105/Cry2Ab2-resistant H.zea.The resistance in VT2P-RR was determined to be incomplete on Cry1A.105/Cry2Ab2 maize.The effective dominance levels varied greatly,from recessive to incompletely dominant,depending on maize hybrids and trials,suggesting that proper selection of maize hybrids could be important for mitigating the Cry1A.105/Cry2Ab2 resistance.The data generated should aid in modeling multiple-protein Bt resistance in H.zea.展开更多
The tip vortices and aerodynamics of a NACA0012 wing in the vicinity of the ground were studied in a wind tunnel.The wing tip vortex structures and lift/drag forces were measured by a seven-hole probe and a force bala...The tip vortices and aerodynamics of a NACA0012 wing in the vicinity of the ground were studied in a wind tunnel.The wing tip vortex structures and lift/drag forces were measured by a seven-hole probe and a force balance,respectively.The evolution of the flow structures and aerodynamics with a ground height were analyzed.The vorticity of tip vortices was found to reduce with the decreasing of the ground height,and the position of vortex-core moved gradually to the outboard of the wing tip.Therefore,the down-wash flow induced by the tip vortices was weakened. However,vortex breakdown occurred as the wing lowered to the ground.From the experimental results of aerodynamics,the maximum lift-to-drag ratio was observed when the angle of attack was 2.5°and the ground clearance was 0.2.展开更多
Evaluation of the genetic effect on yield and fiber quality can provide useful information on cotton breeding. Sixteen CSB lines and TM-1 introduced from USDA/ARS were used as male and top-crossed with three elite cul...Evaluation of the genetic effect on yield and fiber quality can provide useful information on cotton breeding. Sixteen CSB lines and TM-1 introduced from USDA/ARS were used as male and top-crossed with three elite cultivars and the 51 F1 hybrids, 16 CSB lines, TM-1, and 3 elite cultivars were planted at the Cotton Research Institute of CAAS, Anyang, Henan Province and Xiajin, Shandong Province, China. The yield traits and fiber quality data were obtained and additive and dominance effect on each trait were measured by AD model. Boll weight takes the largest additive proration, whereas boll number takes the least additive proration. The largest and the least dominant proration for lint yield and boll weight were measured, respectively. Fiber length has the additive and dominance effect, and dominance effect was slightly more than additive effect. Larger additive and no dominance effect on uniformity, micronaire, and fiber strength were measured. Significantly, positive additive effect on boll weight of CSB06 and CSB12Sh was observed. CSB14Sh and CSB01 have significantly positive additive effect on 4 and 3 traits of fiber quality, respectively. CSB01 has the greatest dominant effect on lint yield among CSB lines. The dominant effect on fiber length of CSB lines showed positive. It is beneficial to use CSB06 and CSB12Sh as parents to improve boll size, to use CSB14Sh and CSB01 as parents to improve fiber quality. As for hybrid cotton breeding, it is reasonable using CSB01 to improve lint yield traits, and using CSB01, CSB11Sh, and CSB06 to improve fiber length.展开更多
“Breeding by design” for pure lines may be achieved by construction of an additive QTL-allele matrix in a germplasm panel or breeding population, but this option is not available for hybrids, where both additive and...“Breeding by design” for pure lines may be achieved by construction of an additive QTL-allele matrix in a germplasm panel or breeding population, but this option is not available for hybrids, where both additive and dominance QTL-allele matrices must be constructed. In this study, a hybrid-QTL identification approach, designated PLSRGA, using partial least squares regression(PLSR) for model fitting integrated with a genetic algorithm(GA) for variable selection based on a multi-locus, multi-allele model is described for additive and dominance QTL-allele detection in a diallel hybrid population(DHP). The PLSRGA was shown by simulation experiments to be superior to single-marker analysis and was then used for QTL-allele identification in a soybean DPH yield experiment with eight parents. Twenty-eight main-effect QTL with 138 alleles and nine QTL × environment QTL with 46 alleles were identified, with respective contributions of 61.8% and 23.5% of phenotypic variation. Main-effect additive and dominance QTL-allele matrices were established as a compact form of the DHP genetic structure. The mechanism of heterosis superior-to-parents(or superior-to-parents heterosis, SPH) was explored and might be explained by a complementary locus-set composed of OD+(showing positive over-dominance, most often), PD+(showing positive partial-to-complete dominance, less often) and HA+(showing positive homozygous additivity, occasionally) loci, depending on the parental materials. Any locus-type, whether OD+, PD + and HA+, could be the best genotype of a locus. All hybrids showed various numbers of better or best genotypes at many but not necessarily all loci, indicating further SPH improvement. Based on the additive/dominance QTL-allele matrices, the best hybrid genotype was predicted, and a hybrid improvement approach is suggested. PLSRGA is powerful for hybrid QTL-allele detection and cross-SPH improvement.展开更多
Inheritance and interrelationship of phenotype and genotype of earliness traits were evaluated in a diallel analysis involving six early-maturing parents. Date of first square (DFS), date of first flower (DFF), da...Inheritance and interrelationship of phenotype and genotype of earliness traits were evaluated in a diallel analysis involving six early-maturing parents. Date of first square (DFS), date of first flower (DFF), date of first open boll (DFOB), number of node first sympodial branch (NNFSB), and harvested rate before frost (HRBF) as earliness traits of six parents, 15 F1 hybrids and 15 F2 progenies were investigated from 2005 to 2008. The experiment design was a randomized complete block design with three replications. Additive, dominance and epistasis effects were analyzed with ADAA (additive- dominance-epistasis) model. HRBF, DFF, and DFOB showed significant additive genetic variances. Heritability estimates ranged from 0.088 (HN, narrow sense) and 0.416 (HNE, environment interaction) for HRBF, to 0.103 (HN) and 0.524 (HNE) for DFF, and to 0.187 (HN) and 0.519 (H~) for DFOB. Dominance genetic effects for DFS, DFF, DFOB, and NNSFB were stronger than additive effects. Additive-by-additive epistatic effects for DFS, DFOB, and NNSFB were detected and affected by environment. Correlation analysis showed generally that HRBF had a significant negative genetic and phenotypic correlation with DFS, DFOB, and NNFSB; DFS had significant positive genetic and phenotypic correlations with DFF, DFOB, and NNFSB; significant positive genetic and phenotypic correlations were also detected between DFF and DFOB, DFF and NNFSB, DFOB and NNFSB. The results showed that the lower the node to the first fruiting branch and the shorter the plant, the earlier was the onset of squaring, flowering, and boll opening, the higher was the harvest rate before frost. Heredity of earliness traits among parents and their hybrids were also detected and parents A1, A2, Bl, B2, and B3 could be used to improve earliness traits of short season cotton cultivars.展开更多
Aims Nitrogen(N)enrichment caused by human activities threatens bio-diversity and alters plant community composition and structure.It has been found that heavy and infrequent N inputs may over-estimate species extinct...Aims Nitrogen(N)enrichment caused by human activities threatens bio-diversity and alters plant community composition and structure.It has been found that heavy and infrequent N inputs may over-estimate species extinction,but it remains unclear whether plant community structure will equally respond to frequent reactive N enriched conditions.Methods We independently manipulated the rates and the frequencies of N addition in a temperate steppe,northern China,between 2008 and 2013.Important Findings We found that plant community structure changes,measured by‘Euclidean distance’involving species richness,composition and productivity,were significantly positively related to increasing N enrichment rates rather than frequencies.Changes in aboveground net primary productivity(ANPP),plant species richness and shifts in dominant species were observed.Community ANPP increased with N enrichment,whereas species richness reduced.The frequency of N enrichment increased species richness but had no impacts on community ANPP and the relative ANPP of the two dominant spe-cies,C3 perennial bunchgrass Stipa grandis and C3 perennial rhi-zome grass Leymus chinensis.The ANPP and relative ANPP of the two dominant species were significantly negatively correlated with each other.Moreover,changes in the relative ANPP of S.grandis was negatively associated with the changes in community structure.After 5 years’treatment,direct influence of the frequency of N en-richment on plant community structure was not observed,but the effects of the rate of N enrichment were apparent.Our results sug-gested that further study in various ecosystems and with long-term and well-controlled comparisons the frequency vs.the rate of N enrichment may still be needed.展开更多
We prove that sharply dominating Archimedean atomic lattice effect algebras can be characterized by the property called basic decomposition of elements.As an application we prove the state smearing theorem for these e...We prove that sharply dominating Archimedean atomic lattice effect algebras can be characterized by the property called basic decomposition of elements.As an application we prove the state smearing theorem for these effect algebras.展开更多
Post-transcriptional modifications of histones play important roles in various biological processes. Here, we report that Arabidopsis plants overexpressing histone H3 lysine to methionine mutations at histone H3.1K36(...Post-transcriptional modifications of histones play important roles in various biological processes. Here, we report that Arabidopsis plants overexpressing histone H3 lysine to methionine mutations at histone H3.1K36(H3.1K36M) and H3.3K36(H3.3K36M) have serious developmental defects with early-flowering and change in the modifications of endogenous histone H3, including acetylation at lysine 9(H3K9ac), trimethylation at lysine 27(H3K27me3), di-and tri-methylation at lysine 36(H3K36me2 and H3K36me3). In addition, H3K36M mutation alters its subcellular localization and interacts with H3K36 methyltransferase SDG8. Our results support a model in which H3K36M stably interacts with SDG8, and inhibits the activity of SDG8 by sequestering SDG8, resulting in a dominant negative effect to affect the proper expression levels of a variety of genes and plant development.展开更多
基金This article is published with the approval of the Director of the Louisiana Agricultural Experiment Station as manuscript No.2022-234-37238This project represents work supported by Bayer Crop Science(St.Louis,MO,USA)the Hatch funds from the USDA National Institute of Food and Agriculture,and the USDA Regional Research Project NC-246.
文摘In the U.S.,Helicoverpa zea(Boddie)is a major pest targeted by both transgenic maize and cotton expressing Bacillus thuringiensis(Bt)proteins.Resistance of insect to Bt maize and cotton containing cry1A and cry2A genes has widely occurred in the U.S.In this study,two trials were performed to investigate larval survival and development of a Cry1A.105/Cry2Ab2 dual-protein resistant(VT2P-RR),a susceptible,and an F1 heterozygous(VT2P-RS)populations of H.zea on ears of nine Bt and three non-Bt maize hybrids.The Bt maize hybrids evaluated represent five common pyramided traits expressing two or three of the Cry1A.105,Cry1Ab,Cry1F,Cry2Ab2,and Vip3Aa20 proteins.In the laboratory,neonates of the three H.zea populations were inoculated on silks of ears collected from maize at R1-R2 plant stages;and larval survivorship was checked 10 d after neonate release.All three insect populations survived normally on non-Bt maize ears.Varied numbers of VT2P-RR and VT2P-RS survived on ears of Cry1A.105/Cry2Ab2 maize,while all larvae of the three populations died or could not develop on ears of Vip3Aa20-expressing maize.The results demonstrated that the dual-protein resistant H.zea was not cross-resistant to Vip3Aa20-expressing maize,and thus traits with vip3Aa20 gene should be effective to manage Cry1A.105/Cry2Ab2-resistant H.zea.The resistance in VT2P-RR was determined to be incomplete on Cry1A.105/Cry2Ab2 maize.The effective dominance levels varied greatly,from recessive to incompletely dominant,depending on maize hybrids and trials,suggesting that proper selection of maize hybrids could be important for mitigating the Cry1A.105/Cry2Ab2 resistance.The data generated should aid in modeling multiple-protein Bt resistance in H.zea.
基金supported by the National Natural Science Foundation of China(11072142)Shanghai Program for Innovative Research Team in Universities
文摘The tip vortices and aerodynamics of a NACA0012 wing in the vicinity of the ground were studied in a wind tunnel.The wing tip vortex structures and lift/drag forces were measured by a seven-hole probe and a force balance,respectively.The evolution of the flow structures and aerodynamics with a ground height were analyzed.The vorticity of tip vortices was found to reduce with the decreasing of the ground height,and the position of vortex-core moved gradually to the outboard of the wing tip.Therefore,the down-wash flow induced by the tip vortices was weakened. However,vortex breakdown occurred as the wing lowered to the ground.From the experimental results of aerodynamics,the maximum lift-to-drag ratio was observed when the angle of attack was 2.5°and the ground clearance was 0.2.
基金supported by the National Key Tech-nology R&D Program of China (2006BAD01A05)
文摘Evaluation of the genetic effect on yield and fiber quality can provide useful information on cotton breeding. Sixteen CSB lines and TM-1 introduced from USDA/ARS were used as male and top-crossed with three elite cultivars and the 51 F1 hybrids, 16 CSB lines, TM-1, and 3 elite cultivars were planted at the Cotton Research Institute of CAAS, Anyang, Henan Province and Xiajin, Shandong Province, China. The yield traits and fiber quality data were obtained and additive and dominance effect on each trait were measured by AD model. Boll weight takes the largest additive proration, whereas boll number takes the least additive proration. The largest and the least dominant proration for lint yield and boll weight were measured, respectively. Fiber length has the additive and dominance effect, and dominance effect was slightly more than additive effect. Larger additive and no dominance effect on uniformity, micronaire, and fiber strength were measured. Significantly, positive additive effect on boll weight of CSB06 and CSB12Sh was observed. CSB14Sh and CSB01 have significantly positive additive effect on 4 and 3 traits of fiber quality, respectively. CSB01 has the greatest dominant effect on lint yield among CSB lines. The dominant effect on fiber length of CSB lines showed positive. It is beneficial to use CSB06 and CSB12Sh as parents to improve boll size, to use CSB14Sh and CSB01 as parents to improve fiber quality. As for hybrid cotton breeding, it is reasonable using CSB01 to improve lint yield traits, and using CSB01, CSB11Sh, and CSB06 to improve fiber length.
基金supported by the National Key Research and Development Program of China (2021YFF1001204,2017YFD0101500)the MOE Program of Introducing Talents of Discipline to Universities (“111”Project, B08025)+4 种基金the MOE Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT_17R55)the MARA CARS-04 Programthe Jiangsu Higher Education PAPD Programthe Fundamental Research Funds for the Central Universities (KYZZ201901)the Jiangsu JCICMCP Program。
文摘“Breeding by design” for pure lines may be achieved by construction of an additive QTL-allele matrix in a germplasm panel or breeding population, but this option is not available for hybrids, where both additive and dominance QTL-allele matrices must be constructed. In this study, a hybrid-QTL identification approach, designated PLSRGA, using partial least squares regression(PLSR) for model fitting integrated with a genetic algorithm(GA) for variable selection based on a multi-locus, multi-allele model is described for additive and dominance QTL-allele detection in a diallel hybrid population(DHP). The PLSRGA was shown by simulation experiments to be superior to single-marker analysis and was then used for QTL-allele identification in a soybean DPH yield experiment with eight parents. Twenty-eight main-effect QTL with 138 alleles and nine QTL × environment QTL with 46 alleles were identified, with respective contributions of 61.8% and 23.5% of phenotypic variation. Main-effect additive and dominance QTL-allele matrices were established as a compact form of the DHP genetic structure. The mechanism of heterosis superior-to-parents(or superior-to-parents heterosis, SPH) was explored and might be explained by a complementary locus-set composed of OD+(showing positive over-dominance, most often), PD+(showing positive partial-to-complete dominance, less often) and HA+(showing positive homozygous additivity, occasionally) loci, depending on the parental materials. Any locus-type, whether OD+, PD + and HA+, could be the best genotype of a locus. All hybrids showed various numbers of better or best genotypes at many but not necessarily all loci, indicating further SPH improvement. Based on the additive/dominance QTL-allele matrices, the best hybrid genotype was predicted, and a hybrid improvement approach is suggested. PLSRGA is powerful for hybrid QTL-allele detection and cross-SPH improvement.
基金supported by the the Special Grand National Science and Technology Project,China(2009ZX08005-020B)
文摘Inheritance and interrelationship of phenotype and genotype of earliness traits were evaluated in a diallel analysis involving six early-maturing parents. Date of first square (DFS), date of first flower (DFF), date of first open boll (DFOB), number of node first sympodial branch (NNFSB), and harvested rate before frost (HRBF) as earliness traits of six parents, 15 F1 hybrids and 15 F2 progenies were investigated from 2005 to 2008. The experiment design was a randomized complete block design with three replications. Additive, dominance and epistasis effects were analyzed with ADAA (additive- dominance-epistasis) model. HRBF, DFF, and DFOB showed significant additive genetic variances. Heritability estimates ranged from 0.088 (HN, narrow sense) and 0.416 (HNE, environment interaction) for HRBF, to 0.103 (HN) and 0.524 (HNE) for DFF, and to 0.187 (HN) and 0.519 (H~) for DFOB. Dominance genetic effects for DFS, DFF, DFOB, and NNSFB were stronger than additive effects. Additive-by-additive epistatic effects for DFS, DFOB, and NNSFB were detected and affected by environment. Correlation analysis showed generally that HRBF had a significant negative genetic and phenotypic correlation with DFS, DFOB, and NNFSB; DFS had significant positive genetic and phenotypic correlations with DFF, DFOB, and NNFSB; significant positive genetic and phenotypic correlations were also detected between DFF and DFOB, DFF and NNFSB, DFOB and NNFSB. The results showed that the lower the node to the first fruiting branch and the shorter the plant, the earlier was the onset of squaring, flowering, and boll opening, the higher was the harvest rate before frost. Heredity of earliness traits among parents and their hybrids were also detected and parents A1, A2, Bl, B2, and B3 could be used to improve earliness traits of short season cotton cultivars.
基金National Natural Science Foundation of China(NSFC31570469)+2 种基金China Postdoctoral Science Foundation(2015T80153)to Y.Z.,National Key R&D program of China(2016YFC0500202)N.H.,NSFC(41573063)C.W.and National Key R&D program of China(2016YFC0500700)and NSFC(31430016)to X.H.
文摘Aims Nitrogen(N)enrichment caused by human activities threatens bio-diversity and alters plant community composition and structure.It has been found that heavy and infrequent N inputs may over-estimate species extinction,but it remains unclear whether plant community structure will equally respond to frequent reactive N enriched conditions.Methods We independently manipulated the rates and the frequencies of N addition in a temperate steppe,northern China,between 2008 and 2013.Important Findings We found that plant community structure changes,measured by‘Euclidean distance’involving species richness,composition and productivity,were significantly positively related to increasing N enrichment rates rather than frequencies.Changes in aboveground net primary productivity(ANPP),plant species richness and shifts in dominant species were observed.Community ANPP increased with N enrichment,whereas species richness reduced.The frequency of N enrichment increased species richness but had no impacts on community ANPP and the relative ANPP of the two dominant spe-cies,C3 perennial bunchgrass Stipa grandis and C3 perennial rhi-zome grass Leymus chinensis.The ANPP and relative ANPP of the two dominant species were significantly negatively correlated with each other.Moreover,changes in the relative ANPP of S.grandis was negatively associated with the changes in community structure.After 5 years’treatment,direct influence of the frequency of N en-richment on plant community structure was not observed,but the effects of the rate of N enrichment were apparent.Our results sug-gested that further study in various ecosystems and with long-term and well-controlled comparisons the frequency vs.the rate of N enrichment may still be needed.
基金the National Natural Science Foundation of China (Grant Nos.10771191,10471124)the Natural Science Foundation of Zhejiang Province (Grant Nos.M103057,10771191)the Slovak Research and Development Agency under the contracts SK-CN-017-06 and APVV-0071-06
文摘We prove that sharply dominating Archimedean atomic lattice effect algebras can be characterized by the property called basic decomposition of elements.As an application we prove the state smearing theorem for these effect algebras.
基金supported by the National Key Research and Development Program of China (2016YFD0100902)Chinese Academy of Sciences (XDPB0403)
文摘Post-transcriptional modifications of histones play important roles in various biological processes. Here, we report that Arabidopsis plants overexpressing histone H3 lysine to methionine mutations at histone H3.1K36(H3.1K36M) and H3.3K36(H3.3K36M) have serious developmental defects with early-flowering and change in the modifications of endogenous histone H3, including acetylation at lysine 9(H3K9ac), trimethylation at lysine 27(H3K27me3), di-and tri-methylation at lysine 36(H3K36me2 and H3K36me3). In addition, H3K36M mutation alters its subcellular localization and interacts with H3K36 methyltransferase SDG8. Our results support a model in which H3K36M stably interacts with SDG8, and inhibits the activity of SDG8 by sequestering SDG8, resulting in a dominant negative effect to affect the proper expression levels of a variety of genes and plant development.