Blast-induced dominant vibration frequency (DVF) involves a complex, nonlinear and small sample system considering rock properties, blasting parameters and topography. In this study, a combination of grey relational...Blast-induced dominant vibration frequency (DVF) involves a complex, nonlinear and small sample system considering rock properties, blasting parameters and topography. In this study, a combination of grey relational analysis and dimensional analysis procedures for prediction of dominant vibration frequency are presented. Six factors are selected from extensive effect factor sequences based on grey relational analysis, and then a novel blast-induced dominant vibration frequency prediction is obtained by dimensional analysis. In addition, the prediction is simplified by sensitivity analysis with 195 experimental blast records. Validation is carried out for the proposed formula based on the site test database of the first- period blasting excavation in the Guangdong Lufeng Nuclear Power Plant (GLNPP). The results show the proposed approach has a higher fitting degree and smaller mean error when compared with traditional predictions.展开更多
The effects of tension on vortex-induced vibration (VIV) responses for a tension-dominated long cylinder with an aspect ratio of 550 in uniform flows are experimentally investigated in this paper. The results show tha...The effects of tension on vortex-induced vibration (VIV) responses for a tension-dominated long cylinder with an aspect ratio of 550 in uniform flows are experimentally investigated in this paper. The results show that elevated tension suppresses fluctuations of maximum displacement with respect to flow velocity and makes chaotic VIV more likely to appear. With respect to periodic VIV, if elevated tension is applied, the dominant vibration frequency in the in-line (IL) direction will switch from a fundamental vibration frequency to twice the value of the fundamental vibration frequency, which results in a ratio of the dominant vibration frequency in the IL direction to that in the cross-flow direction of 2.0. The suppression of the elevated tension in the fluctuation of the maximum displacement causes the axial tension to become an active control parameter for the VIV maximum displacement of a tension-dominated long riser or tether of an engineering structure in deep oceans. However, the axial tension must be optimized before being used since the high dominant vibration frequency due to the elevated tension may unfavorably affect the fatigue life of the riser or tether.展开更多
基金National Natural Science Funds for Distinguished Young Scholar under Grant No.51009086Hubei Key Laboratory of Roadway Bridge and Structure Engineering under Grant No.DQJJ201313Major State Basic Research Development Program of China(973 Program)under Grant No.2010CB732001
文摘Blast-induced dominant vibration frequency (DVF) involves a complex, nonlinear and small sample system considering rock properties, blasting parameters and topography. In this study, a combination of grey relational analysis and dimensional analysis procedures for prediction of dominant vibration frequency are presented. Six factors are selected from extensive effect factor sequences based on grey relational analysis, and then a novel blast-induced dominant vibration frequency prediction is obtained by dimensional analysis. In addition, the prediction is simplified by sensitivity analysis with 195 experimental blast records. Validation is carried out for the proposed formula based on the site test database of the first- period blasting excavation in the Guangdong Lufeng Nuclear Power Plant (GLNPP). The results show the proposed approach has a higher fitting degree and smaller mean error when compared with traditional predictions.
基金supported by the Construction Technology Program of the Ministry of Transport (Grant 2013 318 740050)
文摘The effects of tension on vortex-induced vibration (VIV) responses for a tension-dominated long cylinder with an aspect ratio of 550 in uniform flows are experimentally investigated in this paper. The results show that elevated tension suppresses fluctuations of maximum displacement with respect to flow velocity and makes chaotic VIV more likely to appear. With respect to periodic VIV, if elevated tension is applied, the dominant vibration frequency in the in-line (IL) direction will switch from a fundamental vibration frequency to twice the value of the fundamental vibration frequency, which results in a ratio of the dominant vibration frequency in the IL direction to that in the cross-flow direction of 2.0. The suppression of the elevated tension in the fluctuation of the maximum displacement causes the axial tension to become an active control parameter for the VIV maximum displacement of a tension-dominated long riser or tether of an engineering structure in deep oceans. However, the axial tension must be optimized before being used since the high dominant vibration frequency due to the elevated tension may unfavorably affect the fatigue life of the riser or tether.