Let G=(V,E) be a simple graph. For any real valued function f∶V→R and SV, let f(S)=∑ u∈S?f(u). A majority dominating function is a function f∶V→{-1,1} such that f(N)≥1 for at least half the vertices v∈V. Th...Let G=(V,E) be a simple graph. For any real valued function f∶V→R and SV, let f(S)=∑ u∈S?f(u). A majority dominating function is a function f∶V→{-1,1} such that f(N)≥1 for at least half the vertices v∈V. Then majority domination number of a graph G is γ maj(G)=min{f(V)|f is a majority dominating function on G}. We obtain lower bounds on this parameter and generalize some results of Henning.展开更多
Let G=(V, E) be a simple graph without an isolate. A subset T of V is a total dominating set of G if for any there exists at least one vertex such that .The total domination number γ1(G) of G is the minimum order of...Let G=(V, E) be a simple graph without an isolate. A subset T of V is a total dominating set of G if for any there exists at least one vertex such that .The total domination number γ1(G) of G is the minimum order of a total dominating set of G. This paper proves that if G is a connected graph with n≥3 vertices and minimum degree at least two.展开更多
A subset S of V is called a k-connected dominating set if S is a dominating set and the induced subgraph S has at most k components.The k-connected domination number γck(G) of G is the minimum cardinality taken ove...A subset S of V is called a k-connected dominating set if S is a dominating set and the induced subgraph S has at most k components.The k-connected domination number γck(G) of G is the minimum cardinality taken over all minimal k-connected dominating sets of G.In this paper,we characterize trees and unicyclic graphs with equal connected domination and 2-connected domination numbers.展开更多
Let γ^*(D) denote the twin domination number of digraph D and let Di× D 2 denote the strong product of Di and D 2. In this paper, we obtain that the twin domination number of strong product of tw...Let γ^*(D) denote the twin domination number of digraph D and let Di× D 2 denote the strong product of Di and D 2. In this paper, we obtain that the twin domination number of strong product of two directed cycles of length at least 2. Furthermore, we give a lower bound of the twin domination number of strong product of two digraphs, and prove that the twin domination number of strong product of the complete digraph and any digraph D equals the twin domination number of D.展开更多
Let <img src="Edit_092a0db1-eefa-4bff-81a0-751d038158ad.png" width="58" height="20" alt="" /> be a graph. A function <img src="Edit_b7158ed5-6825-41cd-b7f0-5ab5e16...Let <img src="Edit_092a0db1-eefa-4bff-81a0-751d038158ad.png" width="58" height="20" alt="" /> be a graph. A function <img src="Edit_b7158ed5-6825-41cd-b7f0-5ab5e16fc53d.png" width="79" height="20" alt="" /> is said to be a Signed Dominating Function (SDF) if <img src="Edit_c6e63805-bcaa-46a9-bc77-42750af8efd4.png" width="135" height="25" alt="" /> holds for all <img src="Edit_bba1b366-af70-46cd-aefe-fc68869da670.png" width="42" height="20" alt="" />. The signed domination number <img src="Edit_22e6d87a-e3be-4037-b4b6-c1de6a40abb0.png" width="284" height="25" alt="" />. In this paper, we determine the exact value of the Signed Domination Number of graphs <img src="Edit_36ef2747-da44-4f9b-a10a-340c61a3f28c.png" width="19" height="20" alt="" /> and <img src="Edit_26eb0f74-fcc2-49ad-8567-492cf3115b73.png" width="19" height="20" alt="" /> for <img src="Edit_856dbcc1-d215-4144-b50c-ac8a225d664f.png" width="32" height="20" alt="" />, which is generalized the known results, respectively, where <img src="Edit_4b7e4f8f-5d38-4fd0-ac4e-dd8ef243029f.png" width="19" height="20" alt="" /> and <img src="Edit_6557afba-e697-4397-994e-a9bda83e3219.png" width="19" height="20" alt="" /> are denotes the <em>k</em>-th power graphs of cycle <img src="Edit_27e6e80f-85d5-4208-b367-a757a0e55d0b.png" width="21" height="20" alt="" /> and path <img src="Edit_70ac5266-950b-4bfd-8d04-21711d3ffc33.png" width="18" height="20" alt="" />.展开更多
A Roman dominating function on a graph G = (V, E) is a function f : V→{0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weig...A Roman dominating function on a graph G = (V, E) is a function f : V→{0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V) = Σu∈Vf(u). The minimum weight of a Roman dominating function on a graph G, denoted by γR(G), is called the Roman dominating number of G. In this paper, we will characterize a tree T with γR(T) = γ(T) + 3.展开更多
Let G = (V, E) be a simple graph. A function f : E → {+1,-1} is called a signed cycle domination function (SCDF) of G if ∑e∈E(C) f(e) ≥ 1 for every induced cycle C of G. The signed cycle domination numbe...Let G = (V, E) be a simple graph. A function f : E → {+1,-1} is called a signed cycle domination function (SCDF) of G if ∑e∈E(C) f(e) ≥ 1 for every induced cycle C of G. The signed cycle domination number of G is defined as γ′sc(G) = min{∑e∈E f(e)| f is an SCDF of G}. This paper will characterize all maxima] planar graphs G with order n ≥ 6 and γ′sc(G) =n.展开更多
Let G be a connected graph of order p, and let γ7(G) denote the domination number of G. Clearly, γ(G) ≤[p/2]. The aim of this paper is to characterize the graphs G that reaches this upper bound. The main results ar...Let G be a connected graph of order p, and let γ7(G) denote the domination number of G. Clearly, γ(G) ≤[p/2]. The aim of this paper is to characterize the graphs G that reaches this upper bound. The main results are as follows: (1) when p is even, γ(G) = p/2 if and only if either G C4 or G is the crown of a connected graph with p/2 vertices; (2) when p is odd, γ(G) = (p-1)/2 if and only if every spanning tree of G is one of the two classes of trees shown in Theorem 3.1.展开更多
A set D of vertices of a graph G = (V, E) is called a dominating set if every vertex of V not in D is adjacent to a vertex of D. In 1996, Reed proved that every graph of order n with minimum degree at least 3 has a ...A set D of vertices of a graph G = (V, E) is called a dominating set if every vertex of V not in D is adjacent to a vertex of D. In 1996, Reed proved that every graph of order n with minimum degree at least 3 has a dominating set of cardinality at most 3n/8. In this paper we generalize Reed's result. We show that every graph G of order n with minimum degree at least 2 has a dominating set of cardinality at most (3n +IV21)/8, where V2 denotes the set of vertices of degree 2 in G. As an application of the above result, we show that for k ≥ 1, the k-restricted domination number rk (G, γ) ≤ (3n+5k)/8 for all graphs of order n with minimum degree at least 3.展开更多
Let G be a finite connected simple graph with a vertex set V (G) and an edge set E(G). A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1}. The weight of f is w(f) = Σ x∈V(G)∪E(G) f(x...Let G be a finite connected simple graph with a vertex set V (G) and an edge set E(G). A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1}. The weight of f is w(f) = Σ x∈V(G)∪E(G) f(x). For an element x ∈ V (G) ∪ E(G), we define $f[x] = \sum\nolimits_{y \in N_T [x]} {f(y)} $ . A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1} such that f[x] ? 1 for all x ∈ V (G) ∪ E(G). The total signed domination number γ s * (G) of G is the minimum weight of a total signed domination function on G.In this paper, we obtain some lower bounds for the total signed domination number of a graph G and compute the exact values of γ s * (G) when G is C n and P n .展开更多
Let G = (V,E) be a graph.A function f : E → {-1,1} is said to be a signed edge total dominating function (SETDF) of G if e ∈N(e) f(e ) ≥ 1 holds for every edge e ∈ E(G).The signed edge total domination ...Let G = (V,E) be a graph.A function f : E → {-1,1} is said to be a signed edge total dominating function (SETDF) of G if e ∈N(e) f(e ) ≥ 1 holds for every edge e ∈ E(G).The signed edge total domination number γ st (G) of G is defined as γ st (G) = min{ e∈E(G) f(e)|f is an SETDF of G}.In this paper we obtain some new lower bounds of γ st (G).展开更多
The (d, m)-domination number γd,m is a new measure to characterize the reliability of resources-sharing in fault tolerant networks, in some sense, which can more accurately characterize the reliability of networks ...The (d, m)-domination number γd,m is a new measure to characterize the reliability of resources-sharing in fault tolerant networks, in some sense, which can more accurately characterize the reliability of networks than the m-diameter does. In this paper, we study the (d,4)-domination numbers of undirected toroidal mesh展开更多
For a simple and connected graph G,denote the domination number,the diameter,and the radius of G asβ(G),D(G),and r(G),respectively.In this paper,we solve two conjectures on the upper bounds ofβ(G)·D(G)andβ(G)+...For a simple and connected graph G,denote the domination number,the diameter,and the radius of G asβ(G),D(G),and r(G),respectively.In this paper,we solve two conjectures on the upper bounds ofβ(G)·D(G)andβ(G)+r(G),which are proposed by the computer system AutoGraphiX.Extremal trees which attain the upper bounds are also considered.展开更多
We investigate how the algebraic connectivity of a graph changes by relocating a connected branch from one vertex to another vertex, and then minimize the algebraic connectivity among all connected graphs of order n w...We investigate how the algebraic connectivity of a graph changes by relocating a connected branch from one vertex to another vertex, and then minimize the algebraic connectivity among all connected graphs of order n with fixed domination number γ≤(n+2)/3, and finally present a lower bound for the algebraic connectivity in terms of the domination number. We also characterize the minimum algebraic connectivity of graphs with domination number half their order.展开更多
Let γ f(G) and γ~t f(G) be the fractional domination number and fractional total domination number of a graph G respectively. Hare and Stewart gave some exact fractional domination number of P n...Let γ f(G) and γ~t f(G) be the fractional domination number and fractional total domination number of a graph G respectively. Hare and Stewart gave some exact fractional domination number of P n×P m (grid graph) with small n and m . But for large n and m , it is difficult to decide the exact fractional domination number. Motivated by this, nearly sharp upper and lower bounds are given to the fractional domination number of grid graphs. Furthermore, upper and lower bounds on the fractional total domination number of strong direct product of graphs are given.展开更多
For a graph G=(V,E),a Roman{2}-dominating function f:V→{0,1,2}has the property that for every vertex v∈V with f(v)=0,either v is adjacent to at least one vertex u for which f(u)=2,or at least two vertices u1 and u2 ...For a graph G=(V,E),a Roman{2}-dominating function f:V→{0,1,2}has the property that for every vertex v∈V with f(v)=0,either v is adjacent to at least one vertex u for which f(u)=2,or at least two vertices u1 and u2 for which f(u1)=f(u2)=1.A Roman{2}-dominating function f=(V0,V1,V2)is called independent if V1∪V2 is an independent set.The weight of an independent Roman{2}-dominating function f is the valueω(f)=Σv∈V f(v),and the independent Roman{2}-domination number i{R2}(G)is the minimum weight of an independent Roman{2}-dominating function on G.In this paper,we characterize all trees with i{R2}(T)=γ(T)+1,and give a linear time algorithm to compute the value of i{R2}(T)for any tree T.展开更多
The study of minus paired domination of a graph G=(V,E) is initiated. Let SV be any paired dominating set of G , a minus paired dominating function is a function of the form f∶V→{-1,0,1} such that ...The study of minus paired domination of a graph G=(V,E) is initiated. Let SV be any paired dominating set of G , a minus paired dominating function is a function of the form f∶V→{-1,0,1} such that f(v)= 1 for v∈S, f(v)≤0 for v∈V-S , and f(N)≥1 for all v∈V . The weight of a minus paired dominating function f is w(f)=∑f(v) , over all vertices v∈V . The minus paired domination number of a graph G is γ - p( G )=min{ w(f)|f is a minus paired dominating function of G }. On the basis of the minus paired domination number of a graph G defined, some of its properties are discussed.展开更多
Let G=(V,E) be a simple graph. For any real valued function f:V →R, the weight of f is f(V) = ∑f(v) over all vertices v∈V . A signed total dominating function is a function f:V→{-1,1} such ...Let G=(V,E) be a simple graph. For any real valued function f:V →R, the weight of f is f(V) = ∑f(v) over all vertices v∈V . A signed total dominating function is a function f:V→{-1,1} such that f(N(v)) ≥1 for every vertex v∈V . The signed total domination number of a graph G equals the minimum weight of a signed total dominating function on G . In this paper, some properties of the signed total domination number of a graph G are discussed.展开更多
Let G = (V, E) be a graph, and let f : V →{-1, 1} be a two-valued function. If ∑x∈N(v) f(x) ≥ 1 for each v ∈ V, where N(v) is the open neighborhood of v, then f is a signed total dominating function on ...Let G = (V, E) be a graph, and let f : V →{-1, 1} be a two-valued function. If ∑x∈N(v) f(x) ≥ 1 for each v ∈ V, where N(v) is the open neighborhood of v, then f is a signed total dominating function on G. A set {fl, f2,… fd} of signed d total dominating functions on G with the property that ∑i=1^d fi(x) ≤ 1 for each x ∈ V, is called a signed total dominating family (of functions) on G. The maximum number of functions in a signed total dominating family on G is the signed total domatic number on G, denoted by dt^s(G). The properties of the signed total domatic number dt^s(G) are studied in this paper. In particular, we give the sharp bounds of the signed total domatic number of regular graphs, complete bipartite graphs and complete graphs.展开更多
The bondage number of γ f, b f(G) , is defined to be the minimum cardinality of a set of edges whose removal from G results in a graph G′ satisfying γ f(G′)> γ f(G) . The reinforcement number of γ f, ...The bondage number of γ f, b f(G) , is defined to be the minimum cardinality of a set of edges whose removal from G results in a graph G′ satisfying γ f(G′)> γ f(G) . The reinforcement number of γ f, r f(G) , is defined to be the minimum cardinality of a set of edges which when added to G results in a graph G′ satisfying γ f(G′)< γ f(G) . G.S.Domke and R.C.Laskar initiated the study of them and gave exact values of b f(G) and r f(G) for some classes of graphs. Exact values of b f(G) and r f(G) for complete multipartite graphs are given and some results are extended.展开更多
文摘Let G=(V,E) be a simple graph. For any real valued function f∶V→R and SV, let f(S)=∑ u∈S?f(u). A majority dominating function is a function f∶V→{-1,1} such that f(N)≥1 for at least half the vertices v∈V. Then majority domination number of a graph G is γ maj(G)=min{f(V)|f is a majority dominating function on G}. We obtain lower bounds on this parameter and generalize some results of Henning.
文摘Let G=(V, E) be a simple graph without an isolate. A subset T of V is a total dominating set of G if for any there exists at least one vertex such that .The total domination number γ1(G) of G is the minimum order of a total dominating set of G. This paper proves that if G is a connected graph with n≥3 vertices and minimum degree at least two.
文摘A subset S of V is called a k-connected dominating set if S is a dominating set and the induced subgraph S has at most k components.The k-connected domination number γck(G) of G is the minimum cardinality taken over all minimal k-connected dominating sets of G.In this paper,we characterize trees and unicyclic graphs with equal connected domination and 2-connected domination numbers.
基金The NSF(11301450,61363020,11226294)of Chinathe Youth Science and Technology Education Project(2014731003)of Xinjiang Province
文摘Let γ^*(D) denote the twin domination number of digraph D and let Di× D 2 denote the strong product of Di and D 2. In this paper, we obtain that the twin domination number of strong product of two directed cycles of length at least 2. Furthermore, we give a lower bound of the twin domination number of strong product of two digraphs, and prove that the twin domination number of strong product of the complete digraph and any digraph D equals the twin domination number of D.
文摘Let <img src="Edit_092a0db1-eefa-4bff-81a0-751d038158ad.png" width="58" height="20" alt="" /> be a graph. A function <img src="Edit_b7158ed5-6825-41cd-b7f0-5ab5e16fc53d.png" width="79" height="20" alt="" /> is said to be a Signed Dominating Function (SDF) if <img src="Edit_c6e63805-bcaa-46a9-bc77-42750af8efd4.png" width="135" height="25" alt="" /> holds for all <img src="Edit_bba1b366-af70-46cd-aefe-fc68869da670.png" width="42" height="20" alt="" />. The signed domination number <img src="Edit_22e6d87a-e3be-4037-b4b6-c1de6a40abb0.png" width="284" height="25" alt="" />. In this paper, we determine the exact value of the Signed Domination Number of graphs <img src="Edit_36ef2747-da44-4f9b-a10a-340c61a3f28c.png" width="19" height="20" alt="" /> and <img src="Edit_26eb0f74-fcc2-49ad-8567-492cf3115b73.png" width="19" height="20" alt="" /> for <img src="Edit_856dbcc1-d215-4144-b50c-ac8a225d664f.png" width="32" height="20" alt="" />, which is generalized the known results, respectively, where <img src="Edit_4b7e4f8f-5d38-4fd0-ac4e-dd8ef243029f.png" width="19" height="20" alt="" /> and <img src="Edit_6557afba-e697-4397-994e-a9bda83e3219.png" width="19" height="20" alt="" /> are denotes the <em>k</em>-th power graphs of cycle <img src="Edit_27e6e80f-85d5-4208-b367-a757a0e55d0b.png" width="21" height="20" alt="" /> and path <img src="Edit_70ac5266-950b-4bfd-8d04-21711d3ffc33.png" width="18" height="20" alt="" />.
基金Supported by the NSF of education Department of Henan Province(200510475038)
文摘A Roman dominating function on a graph G = (V, E) is a function f : V→{0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V) = Σu∈Vf(u). The minimum weight of a Roman dominating function on a graph G, denoted by γR(G), is called the Roman dominating number of G. In this paper, we will characterize a tree T with γR(T) = γ(T) + 3.
基金Supported by Doctoral Scientific Research Fund of Harbin Normal University(Grant No.KGB201008)
文摘Let G = (V, E) be a simple graph. A function f : E → {+1,-1} is called a signed cycle domination function (SCDF) of G if ∑e∈E(C) f(e) ≥ 1 for every induced cycle C of G. The signed cycle domination number of G is defined as γ′sc(G) = min{∑e∈E f(e)| f is an SCDF of G}. This paper will characterize all maxima] planar graphs G with order n ≥ 6 and γ′sc(G) =n.
基金Supported by the National Science Foundation of Jiangxi province.
文摘Let G be a connected graph of order p, and let γ7(G) denote the domination number of G. Clearly, γ(G) ≤[p/2]. The aim of this paper is to characterize the graphs G that reaches this upper bound. The main results are as follows: (1) when p is even, γ(G) = p/2 if and only if either G C4 or G is the crown of a connected graph with p/2 vertices; (2) when p is odd, γ(G) = (p-1)/2 if and only if every spanning tree of G is one of the two classes of trees shown in Theorem 3.1.
基金supported by Korea Research Foundation Grant (KRF-2002-015-cp0050)the National Natural Science Foundation of China (Grant Nos. 60773078, 10571117)+3 种基金the ShuGuang Plan of Shanghai Education Development Foundation (Grant No. 06SG42)M. A. Henning is supported in part by the South African National Research Foundationthe University of KwaZulu-Natalsupported by Shanghai Leading Academic Discipline Project (No. $30104)
文摘A set D of vertices of a graph G = (V, E) is called a dominating set if every vertex of V not in D is adjacent to a vertex of D. In 1996, Reed proved that every graph of order n with minimum degree at least 3 has a dominating set of cardinality at most 3n/8. In this paper we generalize Reed's result. We show that every graph G of order n with minimum degree at least 2 has a dominating set of cardinality at most (3n +IV21)/8, where V2 denotes the set of vertices of degree 2 in G. As an application of the above result, we show that for k ≥ 1, the k-restricted domination number rk (G, γ) ≤ (3n+5k)/8 for all graphs of order n with minimum degree at least 3.
基金the National Natural Science Foundation of China(Grant No.10471311)
文摘Let G be a finite connected simple graph with a vertex set V (G) and an edge set E(G). A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1}. The weight of f is w(f) = Σ x∈V(G)∪E(G) f(x). For an element x ∈ V (G) ∪ E(G), we define $f[x] = \sum\nolimits_{y \in N_T [x]} {f(y)} $ . A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1} such that f[x] ? 1 for all x ∈ V (G) ∪ E(G). The total signed domination number γ s * (G) of G is the minimum weight of a total signed domination function on G.In this paper, we obtain some lower bounds for the total signed domination number of a graph G and compute the exact values of γ s * (G) when G is C n and P n .
基金Supported by the National Natural Science Foundation of China (Grant No. 11061014)
文摘Let G = (V,E) be a graph.A function f : E → {-1,1} is said to be a signed edge total dominating function (SETDF) of G if e ∈N(e) f(e ) ≥ 1 holds for every edge e ∈ E(G).The signed edge total domination number γ st (G) of G is defined as γ st (G) = min{ e∈E(G) f(e)|f is an SETDF of G}.In this paper we obtain some new lower bounds of γ st (G).
基金Supported by National Natural Science Foundation of China (Grant No. 11071233)Foundation of Huangshan University (Grant No. 2011xkj012)
文摘The (d, m)-domination number γd,m is a new measure to characterize the reliability of resources-sharing in fault tolerant networks, in some sense, which can more accurately characterize the reliability of networks than the m-diameter does. In this paper, we study the (d,4)-domination numbers of undirected toroidal mesh
基金This work was supported by National Natural Science Foundation of China(Nos.61222201,11171283)We are grateful to the Journals Editorial Office for the useful suggestions and help.And we gratefully acknowledge the two reviewers who correct some errors of this paper。
文摘For a simple and connected graph G,denote the domination number,the diameter,and the radius of G asβ(G),D(G),and r(G),respectively.In this paper,we solve two conjectures on the upper bounds ofβ(G)·D(G)andβ(G)+r(G),which are proposed by the computer system AutoGraphiX.Extremal trees which attain the upper bounds are also considered.
基金Supported by the National Natural Science Foundation of China(No.11871073,11801007)Natural Science Foundation of Anhui Province(No.1808085MA17)
文摘We investigate how the algebraic connectivity of a graph changes by relocating a connected branch from one vertex to another vertex, and then minimize the algebraic connectivity among all connected graphs of order n with fixed domination number γ≤(n+2)/3, and finally present a lower bound for the algebraic connectivity in terms of the domination number. We also characterize the minimum algebraic connectivity of graphs with domination number half their order.
文摘Let γ f(G) and γ~t f(G) be the fractional domination number and fractional total domination number of a graph G respectively. Hare and Stewart gave some exact fractional domination number of P n×P m (grid graph) with small n and m . But for large n and m , it is difficult to decide the exact fractional domination number. Motivated by this, nearly sharp upper and lower bounds are given to the fractional domination number of grid graphs. Furthermore, upper and lower bounds on the fractional total domination number of strong direct product of graphs are given.
基金Supported by National Natural Science Foundation of China(Grant No.12171440)。
文摘For a graph G=(V,E),a Roman{2}-dominating function f:V→{0,1,2}has the property that for every vertex v∈V with f(v)=0,either v is adjacent to at least one vertex u for which f(u)=2,or at least two vertices u1 and u2 for which f(u1)=f(u2)=1.A Roman{2}-dominating function f=(V0,V1,V2)is called independent if V1∪V2 is an independent set.The weight of an independent Roman{2}-dominating function f is the valueω(f)=Σv∈V f(v),and the independent Roman{2}-domination number i{R2}(G)is the minimum weight of an independent Roman{2}-dominating function on G.In this paper,we characterize all trees with i{R2}(T)=γ(T)+1,and give a linear time algorithm to compute the value of i{R2}(T)for any tree T.
文摘The study of minus paired domination of a graph G=(V,E) is initiated. Let SV be any paired dominating set of G , a minus paired dominating function is a function of the form f∶V→{-1,0,1} such that f(v)= 1 for v∈S, f(v)≤0 for v∈V-S , and f(N)≥1 for all v∈V . The weight of a minus paired dominating function f is w(f)=∑f(v) , over all vertices v∈V . The minus paired domination number of a graph G is γ - p( G )=min{ w(f)|f is a minus paired dominating function of G }. On the basis of the minus paired domination number of a graph G defined, some of its properties are discussed.
文摘Let G=(V,E) be a simple graph. For any real valued function f:V →R, the weight of f is f(V) = ∑f(v) over all vertices v∈V . A signed total dominating function is a function f:V→{-1,1} such that f(N(v)) ≥1 for every vertex v∈V . The signed total domination number of a graph G equals the minimum weight of a signed total dominating function on G . In this paper, some properties of the signed total domination number of a graph G are discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No.1057117), and the Science Foundation of Shanghai Municipal Commission of Education (Grant No.05AZ04).
文摘Let G = (V, E) be a graph, and let f : V →{-1, 1} be a two-valued function. If ∑x∈N(v) f(x) ≥ 1 for each v ∈ V, where N(v) is the open neighborhood of v, then f is a signed total dominating function on G. A set {fl, f2,… fd} of signed d total dominating functions on G with the property that ∑i=1^d fi(x) ≤ 1 for each x ∈ V, is called a signed total dominating family (of functions) on G. The maximum number of functions in a signed total dominating family on G is the signed total domatic number on G, denoted by dt^s(G). The properties of the signed total domatic number dt^s(G) are studied in this paper. In particular, we give the sharp bounds of the signed total domatic number of regular graphs, complete bipartite graphs and complete graphs.
文摘The bondage number of γ f, b f(G) , is defined to be the minimum cardinality of a set of edges whose removal from G results in a graph G′ satisfying γ f(G′)> γ f(G) . The reinforcement number of γ f, r f(G) , is defined to be the minimum cardinality of a set of edges which when added to G results in a graph G′ satisfying γ f(G′)< γ f(G) . G.S.Domke and R.C.Laskar initiated the study of them and gave exact values of b f(G) and r f(G) for some classes of graphs. Exact values of b f(G) and r f(G) for complete multipartite graphs are given and some results are extended.