The Dongpu sag is located in the south of the Bohai Bay basin,China,and has abundant oil and gas reserves.To date,there has been no systematic documentation of its geothermal fields.This study measured the rock therma...The Dongpu sag is located in the south of the Bohai Bay basin,China,and has abundant oil and gas reserves.To date,there has been no systematic documentation of its geothermal fields.This study measured the rock thermal conductivity of 324 cores from 47 wells,and calculated rock thermal conductivity for different formations.The geothermal gradient and terrestrial heat flow were calculated for 192 wells on basis of 892 formation-testing data from 523 wells.The results show that the Dongpu sag is characterized by a medium-temperature geothermal field between stable and active tectonic areas,with an average geothermal gradient of 32.0℃/km and terrestrial heat flow of 65.6 mW/m2.The geothermal fields in the Dongpu sag is significantly controlled by the Changyuan,Yellow River,and Lanliao basement faults.They developed in the Paleogene and the Dongying movement occurred at the Dongying Formation depositional period.The geothermal fields distribution has a similar characteristic to the tectonic framework of the Dongpu sag,namely two subsags,one uplift,one steep slope and one gentle slope.The oil and gas distribution is closely associated with the present geothermal fields.The work may provide constraints for reconstructing the thermal history and modeling source rock maturation evolution in the Dongpu sag.展开更多
Taking the inter-salt organic-rich shales in the third member of Paleogene Shahejie Formation(Es3)of Dongpu sag in Bohai Bay Basin as an example,the origin of overpressure,development characteristics,formation and evo...Taking the inter-salt organic-rich shales in the third member of Paleogene Shahejie Formation(Es3)of Dongpu sag in Bohai Bay Basin as an example,the origin of overpressure,development characteristics,formation and evolution mechanism,formation stages and geological significance on shale oil and gas of overpressure fractures in the inter-salt shale reservoir were investigated by means of thin section identification,scanning electron microscopy observation,analysis of fluid inclusions,logging data analysis,and formation pressure inversion.The results show that overpressure is universal in the salt-lake basin of Dongpu sag,and under-compaction caused by the sealing of salt-gypsum layer,pressurization due to hydrocarbon generation,transformation and dehydration of clay minerals,and fault sealing are the 4 main factors leading to the occurrence of overpressure.The overpressure fractures are small in scale,with an average length of 356.2μm and an average underground opening of 11.6μm.But they are densely developed,with an average surface density of 0.76 cm/cm2.Moreover,they are often accompanied by oil and gas charging,and thus high in effectiveness.Overpressure fractures were mainly formed during two periods of large-scale oil and gas charging,approximately 25-30 Ma ago and 0-5 Ma ago.Inter-salt overpressure fractures play dual roles as the storage space and migration paths of shale oil and gas.They contribute 22.3%to the porosity of shale reservoir and 51.4%to the permeability.They can connect fracture systems of multiple scales,greatly improving the quality of shale reservoir.During the development of shale oil and gas,inter-salt overpressure fractures can affect the extension and morphology of hydraulic fractures,giving rise to complex and highly permeable volumetric fracture networks,improving hydraulic fracturing effect and enhancing shale oil and gas productivity.展开更多
基金granted by the Key Project of the National Natural Science Foundation of China (Grant Nos. 41125010, 91114202, 90914006)the key state science and technology projects (Grant No: 2011ZX05006-004)the National Basic Research Program of China (Grant No: 2011CB201100)
文摘The Dongpu sag is located in the south of the Bohai Bay basin,China,and has abundant oil and gas reserves.To date,there has been no systematic documentation of its geothermal fields.This study measured the rock thermal conductivity of 324 cores from 47 wells,and calculated rock thermal conductivity for different formations.The geothermal gradient and terrestrial heat flow were calculated for 192 wells on basis of 892 formation-testing data from 523 wells.The results show that the Dongpu sag is characterized by a medium-temperature geothermal field between stable and active tectonic areas,with an average geothermal gradient of 32.0℃/km and terrestrial heat flow of 65.6 mW/m2.The geothermal fields in the Dongpu sag is significantly controlled by the Changyuan,Yellow River,and Lanliao basement faults.They developed in the Paleogene and the Dongying movement occurred at the Dongying Formation depositional period.The geothermal fields distribution has a similar characteristic to the tectonic framework of the Dongpu sag,namely two subsags,one uplift,one steep slope and one gentle slope.The oil and gas distribution is closely associated with the present geothermal fields.The work may provide constraints for reconstructing the thermal history and modeling source rock maturation evolution in the Dongpu sag.
基金Supported by the China National Science and Technology Major Project(2011ZX05006-004)
文摘Taking the inter-salt organic-rich shales in the third member of Paleogene Shahejie Formation(Es3)of Dongpu sag in Bohai Bay Basin as an example,the origin of overpressure,development characteristics,formation and evolution mechanism,formation stages and geological significance on shale oil and gas of overpressure fractures in the inter-salt shale reservoir were investigated by means of thin section identification,scanning electron microscopy observation,analysis of fluid inclusions,logging data analysis,and formation pressure inversion.The results show that overpressure is universal in the salt-lake basin of Dongpu sag,and under-compaction caused by the sealing of salt-gypsum layer,pressurization due to hydrocarbon generation,transformation and dehydration of clay minerals,and fault sealing are the 4 main factors leading to the occurrence of overpressure.The overpressure fractures are small in scale,with an average length of 356.2μm and an average underground opening of 11.6μm.But they are densely developed,with an average surface density of 0.76 cm/cm2.Moreover,they are often accompanied by oil and gas charging,and thus high in effectiveness.Overpressure fractures were mainly formed during two periods of large-scale oil and gas charging,approximately 25-30 Ma ago and 0-5 Ma ago.Inter-salt overpressure fractures play dual roles as the storage space and migration paths of shale oil and gas.They contribute 22.3%to the porosity of shale reservoir and 51.4%to the permeability.They can connect fracture systems of multiple scales,greatly improving the quality of shale reservoir.During the development of shale oil and gas,inter-salt overpressure fractures can affect the extension and morphology of hydraulic fractures,giving rise to complex and highly permeable volumetric fracture networks,improving hydraulic fracturing effect and enhancing shale oil and gas productivity.