Midbrain dopaminergic neurons play an important role in the etiology of neurodevelopmental and neurodegenerative diseases.They also represent a potential source of transplanted cells for therapeutic applications.In vi...Midbrain dopaminergic neurons play an important role in the etiology of neurodevelopmental and neurodegenerative diseases.They also represent a potential source of transplanted cells for therapeutic applications.In vitro differentiation of functional midbrain dopaminergic neurons provides an accessible platform to study midbrain neuronal dysfunction and can be used to examine obstacles to dopaminergic neuronal development.Emerging evidence and impressive advances in human induced pluripotent stem cells,with tuned neural induction and differentiation protocols,makes the production of induced pluripotent stem cell-derived dopaminergic neurons feasible.Using SB431542 and dorsomorphin dual inhibitor in an induced pluripotent stem cell-derived neural induction protocol,we obtained multiple subtypes of neurons,including 20%tyrosine hydroxylase-positive dopaminergic neurons.To obtain more dopaminergic neurons,we next added sonic hedgehog(SHH)and fibroblast growth factor 8(FGF8)on day 8 of induction.This increased the proportion of dopaminergic neurons,up to 75%tyrosine hydroxylase-positive neurons,with 15%tyrosine hydroxylase and forkhead box protein A2(FOXA2)co-expressing neurons.We further optimized the induction protocol by applying the small molecule inhibitor,CHIR99021(CHIR).This helped facilitate the generation of midbrain dopaminergic neurons,and we obtained 31-74%midbrain dopaminergic neurons based on tyrosine hydroxylase and FOXA2 staining.Thus,we have established three induction protocols for dopaminergic neurons.Based on tyrosine hydroxylase and FOXA2 immunostaining analysis,the CHIR,SHH,and FGF8 combined protocol produces a much higher proportion of midbrain dopaminergic neurons,which could be an ideal resource for tackling midbrain-related diseases.展开更多
OBJECTIVE To research the effect of naringenin(NAR) on LPS-induced dopaminergic neurons damage and its potential mechanism.METHODS Rats were randomly divided into the following six groups(n=10):control(0.9% NaCl),NAR ...OBJECTIVE To research the effect of naringenin(NAR) on LPS-induced dopaminergic neurons damage and its potential mechanism.METHODS Rats were randomly divided into the following six groups(n=10):control(0.9% NaCl),NAR alone(100 mg·kg-1),LPS(5 μg),LPS+NAR(50 mg·kg-1) and LPS+NAR(100 mg·kg-1).Rats were received a single LPS unilateral injection into the SN pars compacts,after seven daily intragastric administration of NAR,rats′ behavior was analyzed by rotarod test.Then,the expression of TH,IBA-1 and NLRP3 inflammasome were analyzed by Western blotting and immunofluorescence.In vitro experiments,BV-2 cel s were treated with different doses of NAR,and 1 h later,LPS(1 g·L^(-1)) was added to the medium for 24 h,then collect the culture medium and protein for later experiments.The production of IL-1β and IL-18 in culture medium were tested by ELISA,and the production of NO was detected by Griess reagent.The expression of IBA-1,NLRP3 and p-caspase 1 were detected by Western blotting.MN9 D cells were co-cultured with BV2 cells to mimic the animal experiments.MTT assay was used to analyzed the viability of MN9 D cells,and the expression of TH was detected by Western blotting.RESULTS NAR(100 mg · kg-1) could significantly improve the time of rats on the rotating(116.73 s vs 185.45 s,P<0.05).The result of the pathological analysis also suggested that NAR could decrease the activation of microglia as well as the expression of NLRP3 Inflammasome.In addition,NAR also could suppress the expression of pro-inflammatory factor levels,such as IL-1β(P<0.05),IL-18(P<0.05),and the protection of NAR could be inhibited by siR NA NLRP3.Moreover,an in vitro co-culture system with BV2 and MN9 D cells wasused to find the protection of NAR must via microglia,while there is no effect of NAR were directly added to MN9 D cells.CONCLUSION NAR protection of LPS-induced dopaminergic neurons damage might be through mediating NLRP3 inflammasome.展开更多
Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a p...Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson’s disease.However,transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche.Here,we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells.These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion,effectively maintaining axonal integrity in vitro.Importantly,midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts.Overall,our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation.展开更多
Objective To evaluate the role of thrombin-activated microglia in the neurodegeneration of nigral dopaminergic neurons in the rat substantia nigra (SN) in vivo. Methods After stereotaxic thrombin injection into unil...Objective To evaluate the role of thrombin-activated microglia in the neurodegeneration of nigral dopaminergic neurons in the rat substantia nigra (SN) in vivo. Methods After stereotaxic thrombin injection into unilateral SN of rats, immunostaining, reverse transcription polymerase chain reaction (RT-PCR) and biochemical methods were used to observe tyrosine hydroxylase (TH) irnmunoreactive positive cells, microglia activation, nitric oxide (NO) amount and inducible nitricoxide synthase (iNOS) expression. Results (1) Selective damage to dopaminergic neurons was produced after thrombin injection, which was evidenced by loss of TH imrnunostaining in time-dependent manner; (2) Strong microglial activation was observed in the SN; (3) RT-PCR demonstrated the early and transient expression of neurotoxic factors iNOS mRNA in the SN. Immunofluorescence results found that thrombin induced expression of iNOS in microglia. The NO production in the thrombininjected rats was significantly higher than that of controls (P 〈 0.05). Conclusion Thrombin intranigral injection can injure the dopaminergic neurons in the SN. Thrombin-induced microglia activation precedes dopaminergic neuron degeneration, which suggest that activation of microglia and release of NO may play important roles in dopaminergic neuronal death in the SN.展开更多
Accumulating studies suggest that neuroinflammation characterized by microglial overactivation plays a pivotal role in the pathogenesis of Parkinson’s disease.As such,inhibition of microglial overactivation might be ...Accumulating studies suggest that neuroinflammation characterized by microglial overactivation plays a pivotal role in the pathogenesis of Parkinson’s disease.As such,inhibition of microglial overactivation might be a promising treatment strategy to delay the onset or slow the progression of Parkinson’s disease.Ginsenoside Rbl,the most active ingredient of ginseng,reportedly exerts neuroprotective effects by suppressing inflammation in vitro.The present study aimed to evaluate the neuroprotective and anti-inflammatory effects of ginsenoside Rbl in a lipopolysaccharide-induced rat Parkinson’s disease model.Rats were divided into four groups.In the control group,sham-operated rats were intraperitoneally administered normal saline for 14 consecutive days.In the ginsenoside Rbl group,ginsenoside Rb1(20 mg/kg)was intraperitoneally injected for 14 consecutive days after sham surgery.In the lipopolysaccharide group,a single dose of lipopolysaccharide was unilaterally microinjected into the rat substantial nigra to establish the Parkinson’s disease model.Lipopolysaccharide-injected rats were treated with normal saline for 14 consecutive days.In the ginsenoside Rbl +lipopolysaccharide group,lipopolysaccharide was unilaterally microinjected into the rat substantial nigra.Subsequently,ginsenoside Rbl was intraperitoneally injected for 14 consecutive days.To investigate the therapeutic effects of ginsenoside Rbl,behavioral tests were performed on day 15 after lipopolysaccharide injection.We found that ginsenoside Rbl treatment remarkably reduced apomorphine-induced rotations in lipopolysaccharide-treated rats compared with the lipopolysaccharide group.To investigate the neurotoxicity of lipopolysaccharide and potential protective effect of ginsenoside Rbl,contents of dopamine and its metabolites in the striatum were measured by high-performance liquid chromatography.Compared with the lipopolysaccharide group,ginsenoside Rbl obviously attenuated the lipopolysaccharide-induced depletion of dopamine and its metabolites in the striatum.To further explore the neuroprotective effect of ginsenoside Rbl against lipopolysaccharide-induced neurotoxicity,immunohistochemistry and western blot assay of tyrosine hydroxylase were performed to evaluate dopaminergic neuron degeneration in the substantial nigra par compacta.The results showed that lipopolysaccharide injection caused a large loss of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra and a significant decrease in overall tyrosine hydroxylase expression.However,ginsenoside Rb1 noticeably reversed these changes.To investigate whether the neuroprotective effect of ginsenoside Rbl was associated with inhibition of lipopolysaccharide-induced microglial activation,we examined expression of the microglia marker Iba-1.Our results confirmed that lipopolysaccharide injection induced a significant increase in Iba-1 expression in the substantia nigra;however,ginsenoside Rbl effectively suppressed lipopolysaccharide-induced microglial overactivation.To elucidate the inhibitory mechanism of ginsenoside Rb1,we examined expression levels of inflammatory mediators(tumor necrosis factor-a,interleukin-1β,inducible nitric oxide synthase,and cyclooxygenase 2)and phosphorylation of nuclear factor kappa B signaling-related proteins(IκB,IKK)in the substantia nigra with enzyme-linked immunosorbent and western blot assays.Our results revealed that compared with the control group,phosphorylation and expression of inflammatory mediators IκB and IKK in the substantia nigra of lipopolysaccharide group rats were significantly increased;whereas,ginsenoside Rbl obviously reduced lipopolysaccharide-induced changes on the lesioned side of the substantial nigra par compacta.These findings confirm that ginsenoside Rbl can inhibit inflammation induced by lipopolysaccharide injection into the substantia nigra and protect dopaminergic neurons,which may be related to its inhibition of the nuclear factor kappa B signaling pathway.This study was approved by the Experimental Animal Ethics Committee of Shandong University of China in April 2016(approval No.KYLL-2016-0148).展开更多
BACKGROUND:It has been reported that the conversion of neural stem cells into dopaminergic neurons in vitro can be increased through specific cytokine combinations. Such neural stem cell-derived dopaminergic neurons ...BACKGROUND:It has been reported that the conversion of neural stem cells into dopaminergic neurons in vitro can be increased through specific cytokine combinations. Such neural stem cell-derived dopaminergic neurons could be used for the treatment of Parkinson’s disease. However, little is known about the differences in dopaminergic differentiation between neural stem cells derived from adult and embryonic rats. OBJECTIVE: To study the ability of rat adult and embryonic-derived neural stem cells to differentiate into dopaminergic neurons in vitro. DESIGN: Randomized grouping design. SETTING: Department of Neurosurgery in the First Affiliated Hospital of Sun Yat-sen University. MATERIALS: This experiment was performed at the Surgical Laboratory in the First Affiliated Hospital of Sun Yat-sen University (Guangzhou, Guangdong, China) from June to December 2007. Eight, adult, male, Sprague Dawley rats and eight, pregnant, Sprague Dawley rats (embryonic day 14 or 15) were provided by the Experimental Animal Center of Sun Yat-sen University. METHODS: Neural stem cells derived from adult and embryonic rats were respectively cultivated in serum-free culture medium containing epidermal growth factor and basic fibroblast growth factor. After passaging, neural stem cells were differentiated in medium containing interleukin-1α, interleukin-11, human leukemia inhibition factor, and glial cell line-derived neurotrophic factor. Six days later, cells were analyzed by immunocytochemistry and flow cytometry. MAIN OUTCOME MEASURES: Alterations in cellular morphology after differentiation of neural stem cells derived from adult and embryonic rats; and percentage of tyrosine hydroxylase-positive neurons in the differentiated cells. RESULTS: Neural stem cells derived from adult and embryonic rats were cultivated in differentiation medium. Six days later, differentiated cells were immunoreactive for tyrosine hydroxylase. The percentage of tyrosine hydroxylase positive neurons was (5.6 ± 2.8)% and (17.8 ± 4.2)% for adult and embryonic cells, respectively, with a significant difference between the groups (P 〈 0.01). CONCLUSION: Neural stem cells from embryonic rats have a higher capacity to differentiate into dopaminergic neurons than neural stem cells derived from adult rats.展开更多
BACKGROUND: Dopaminergic neurons differentiated from neural stem cells have been successfully used in the treatment of rat models of Parkinson's disease; however, the survival rate of transplanted cells has been low...BACKGROUND: Dopaminergic neurons differentiated from neural stem cells have been successfully used in the treatment of rat models of Parkinson's disease; however, the survival rate of transplanted cells has been low. Most cells die by apoptosis as a result of overloaded intracellular calcium and the formation of oxygen free radicals. OBJECTIVE: To observe whether survival of transplanted cells, transplantation efficacy, and dopaminergic differentiation from neural stem cells is altered by Panax notoginseng saponins (PNS) in a rat model of Parkinson's disease. DESIGN, TIME AND SETTING: Cellular and molecular biology experiments with randomized group design. The experiment was performed at the Animal Experimental Center, First Hospital of Sun Yat-sen University from April to October 2007. MATERIALS: Thirty-two adult, healthy, male Sprague Dawley rats, and four healthy Sprague Dawley rat embryos at gestational days 14-15 were selected. The right ventral mesencephalon was injected with 6-hydroxydopamine to establish a model of Parkinson's disease. 6-hydroxydopamine and apomorphine were purchased from Sigma, USA. METHODS: Neural stem cells derived from the mesencephalon of embryonic rats were cultivated and passaged in serum-free culture medium. Lesioned animals were randomly divided into four groups (n = 8): dopaminergic neuron, dopaminergic neuron + PNS, PNS, and control. The dopaminergic neuron group was injected with 3 μL cell suspension containing dopaminergic neurons differentiated from neural stem cells. The dopaminergic neurons + PNS group received 3 μ L dopaminergic cell suspension combined with PNS (250 mg/L). The PNS group received 3 μL PNS (250 mg/L), and the control group received 3 μL DMEM/F12 culture medium. MAIN OUTCOME MEASURES: The rats were transcardially perfused with 4% paraformaldehyde at 60 days post-grafting for immunohistochemistry. The rats were intraperitoneally injected with apomorphine (0.5 mg/kg) to induce rotational behavior. RESULTS: Cell counts of tyrosine hydroxylase-positive neurons in the dopaminergic neuron + PNS group were (732±82.6) cells/400-fold field. This was significantly greater than the dopaminergic neuron group [(326 ± 34.8) cells/400-fold field, P 〈 0.01]. Compared to the control group, the rotational asymmetry of rats that received dopaminergic neuron transplants was significantly decreased, beginning at 20 days after operation (P 〈 0.01). Rotational asymmetry was further reduced between 10-60 days post-surgery in the dopaminergic neuron + PNS group, compared to the dopaminergic neuron group (P 〈 0.01). CONCLUSION: Panax notoginseng saponins can increase survival and effectiveness of dopaminergic neurons differentiated from neural stem cells for transplantation in a rat model of Parkinson's disease.展开更多
Prolonged activation of adenosine A1 receptor likely leads to damage of dopaminergic neurons and subsequent development of neurodegenerative diseases.However,the pathogenesis underlying long-term adenosine A1 receptor...Prolonged activation of adenosine A1 receptor likely leads to damage of dopaminergic neurons and subsequent development of neurodegenerative diseases.However,the pathogenesis underlying long-term adenosine A1 receptor activation-induced neurodegeneration remains unclear.In this study,rats were intraperitoneally injected with 5 mg/kg of the adenosine A1 receptor agonist N6-cyclopentyladenosine(CPA)for five weeks.The mobility of rats was evaluated by forced swimming test,while their cognitive capabilities were evaluated by Y-maze test.Expression of sortilin,α-synuclein,p-JUN,and c-JUN proteins in the substantia nigra were detected by western blot analysis.In addition,immunofluorescence staining of sortilin andα-synuclein was performed to detect expression in the substantia nigra.The results showed that,compared with adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine(5 mg/kg)+CPA co-treated rats,motor and memory abilities were reduced,surface expression of sortin andα-synuclein in dopaminergic neurons was reduced,and total sortilin and totalα-synuclein were increased in CPA-treated rats.MN9D cells were incubated with 500 nM CPA alone or in combination with 10μM SP600125(JNK inhibitor)for 48 hours.Quantitative real-time polymerase chain reaction analysis of sortilin andα-synuclein mRNA levels in MN9D cells revealed upregulated sortilin expression in MN9D cells cultured with CPA alone,but the combination of CPA and SP600125 could inhibit this expression.Predictions made using Jasper,PROMO,and Alibaba online databases identified a highly conserved sequence in the sortilin promoter that was predicted to bind JUN in both humans and rodents.A luciferase reporter assay of sortilin promoter plasmid-transfected HEK293T cells confirmed this prediction.After sortilin expression was inhibited by sh-SORT1,expression of p-JUN and c-JUN was detected by western blot analysis.Long-term adenosine A1 receptor activation levels upregulatedα-synuclein expression at the post-transcriptional level by affecting sortilin expression.The online tool Raptor-X-Binding and Discovery Studio 4.5 prediction software predicted that sortilin can bind toα-synuclein.Co-immunoprecipitation revealed an interaction between sortilin andα-synuclein in MN9D cells.Our findings indicate that suppression of prolonged adenosine A1 receptor activation potently inhibited sortilin expression andα-synuclein accumulation,and dramatically improved host cognition and kineticism.This study was approved by the University Committee of Animal Care and Supply at the University of Saskatchewan(approval No.AUP#20070090)in March 2007 and the Animals Ethics Committee of University of South China(approval No.LL0387-USC)in June 2017.展开更多
BACKGROUND: Substantia nigra is deep in position and limited in range, the glial cell line-derived neurotrophic factor (GDNF) injection directly into substantia nigra has relatively greater damages with higher diff...BACKGROUND: Substantia nigra is deep in position and limited in range, the glial cell line-derived neurotrophic factor (GDNF) injection directly into substantia nigra has relatively greater damages with higher difficulty. GDNF injection into striatum, the target area of dopaminergic neuron, may protect the dopaminergic neurons in the compact part of substantia nigra through retrograde transport. OBJECTIVE: To investigate the protective effect of intrastriatal GDNF on dopaminergic neurons in the substantia nigra of mice with Parkinson disease (PD), and analyze the action pathway. DESIGN: A controlled observation. SETTING: Neurobiological Laboratory of Xuzhou Medical College. MATERIALS: Twenty-four male Kunming mice of 7 - 8 weeks old were used. GDNF, 1-methy1-4-pheny1-1,2,3,6-tetrahydropyridine (MPTP) were purchased from Sigma Company (USA); LEICAQWin image processing and analytical system. METHODS: The experiments were carded out in the Neurobiological Laboratory of Xuzhou Medical College from September 2005 to October 2006. The PD models were established in adult KunMing mice by intraperitoneal injection of MPTP. The model mice were were randomly divided into four groups with 6 mice in each group: GDNF 4-day group, phosphate buffer solution (PSB) 4-day group, GDNF 6-day group and PSB 6-day group. Mice in the GDNF 4 and 6-day groups were administrated with 1 μ L GDNF solution (20 μ g/L, dispensed with 0.01 mol/L PBS) injected into right striatum at 4 and 6 days after model establishment. Mice in the PSB 4 and 6-day groups were administrated with 0.01 mol/L PBS of the same volume to the same injection at corresponding time points. ② On the 12^th day after model establishment, the midbrain tissue section of each mice was divided into 3 areas from rostral to caudal sides. The positive neurons of tyroxine hydroxylase (TH) and calcium binding protein (CB) with obvious nucleolus and clear outline were randomly selected for the measurement, and the number of positive neurons in unit area was counted. MAIN OUTCOME MEASURES: Number of positive neurons of TH and CB in midbrain substantia nigra of mice in each group. RESULTS: All the 24 mice were involved in the analysis of results. The numbers of TH^+ and CB^+ neurons in the GDNF 4-day group (54.33±6.92, 46.33±5.54) were obviously more than those in the PBS 4-day group (27.67±5.01, 21.50±5.96, P 〈 0.01). The numbers of TH^+ and CB^+ neurons in the GDNF 6-day group (75.67±5.39, 69.67±8.69) were obviously more than those in the PBS 6-day group (27.17±4.50, 21.33 ±5.72, P 〈 0.01) and those in the GDNF 4-day group (P 〈 0.01 ). CONCLUSION: Intrastriatal GDNF can protect dopaminergic neurons in substantia nigra of PD mice, and it may be related to the increase of CB expression.展开更多
Astrocytes protect neurons by modulating neuronal function and survival.Astrocytes support neurons in several ways.They provide energy through the astrocyte-neuron lactate shuttle,protect neurons from excitotoxicity,a...Astrocytes protect neurons by modulating neuronal function and survival.Astrocytes support neurons in several ways.They provide energy through the astrocyte-neuron lactate shuttle,protect neurons from excitotoxicity,and internalize neuronal lipid droplets to degrade fatty acids for neuronal metabolic and synaptic support,as well as by their high capacity for glutamate uptake and the conversion of glutamate to glutamine.A recent reported astrocyte system for protection of dopamine neurons against the neurotoxic products of dopamine,such as aminochrome and other o-quinones,were generated under neuromelanin synthesis by oxidizing dopamine catechol structure.Astrocytes secrete glutathione transferase M2-2 through exosomes that transport this enzyme into dopaminergic neurons to protect these neurons against aminochrome neurotoxicity.The role of this new astrocyte protective mechanism in Parkinson´s disease is discussed.展开更多
The expression of major histocompatibility complex class I(MHC-I),a key antigen-presenting protein,can be induced in dopaminergic neurons in the substantia nigra,thus indicating its possible involvement in the occurre...The expression of major histocompatibility complex class I(MHC-I),a key antigen-presenting protein,can be induced in dopaminergic neurons in the substantia nigra,thus indicating its possible involvement in the occurrence and development of Parkinson’s disease.However,it remains unclear whether oxidative stress induces Parkinson’s disease through the MHC-I pathway.In the present study,polymerase chain reaction and western blot assays were used to determine the expression of MHC-I in 1-methyl-4-phenylpyridinium(MPP+)-treated SH-SY5Y cells and a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced Parkinson’s disease mouse model.The findings revealed that MHC-I was expressed in both models.To detect whether the expression of MHC-I was able to trigger the infiltration of cytotoxic T cells,immunofluorescence staining was used to detect cytotoxic cluster of differentiation 8(CD8)+T cell infiltration in the substantia nigra of MPTP-treated mice.The results indicated that the presentation of MHC-I in dopaminergic neurons was indeed accompanied by an increase in the number of CD8+T cells.Moreover,in MPTP-induced Parkinson’s disease model mice,the genetic knockdown of endogenous MHC-I,which was caused by injecting specific adenovirus into the substantia nigra,led to a significant reduction in CD8+T cell infiltration and alleviated dopaminergic neuronal death.To further investigate the molecular mechanisms of oxidative stress-induced MHC-I presentation,the expression of PTEN-induced kinase 1(PINK1)was silenced in MPP+-treated SH-SY5Y cells using specific small interfering RNA(siRNA),and there was more presentation of MHC-I in these cells compared with control siRNA-treated cells.Taken together,MPP+-/MPTP-induced oxidative stress can trigger MHC-I presentation and autoimmune activation,thus rendering dopaminergic neurons susceptible to immune cells and degeneration.This may be one of the mechanisms of oxidative stress-induced Parkinson’s disease,and implies the potential neuroprotective role of PINK1 in oxidative stress-induced MHC-I presentation.All animal experiments were approved by the Southern Medical University Ethics Committee(No.81802040,approved on February 25,2018).展开更多
The present study aimed to determine whether a polysaccharide obtained fromSpirulina platensis shows protective effects on dopaminergic neurons. A Parkinson’s disease model was established through the intraperitoneal...The present study aimed to determine whether a polysaccharide obtained fromSpirulina platensis shows protective effects on dopaminergic neurons. A Parkinson’s disease model was established through the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyr-idine (MPTP) in C57BL/6J mice. Prior to the MPTP injection, some mice were pretreated with intraperitoneal injections of a polysaccharide derived fromSpirulina platensis once daily for 10 days. The results showed that the immunoreactive staining and mRNA expression of the dopa-mine transporter and tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, in the substantia nigra, were signiifcantly increased in mice pretreated with 800 mg/kg of the poly-saccharide compared with those in MPTP-treated mice. The activities of superoxide dismutase and glutathione peroxidase in the serum and midbrain were also increased signiifcantly in mice injected with MPTP after pretreatment with the polysaccharide fromSpirulina platensis. By con-trast, the activity of monoamine oxidase B in serum and midbrain maintained unchanged. These experimental ifndings indicate that the polysaccharide obtained fromSpirulina platensis plays a protective role against the MPTP-induced loss of dopaminergic neurons in C57BL/6J mice, and that the antioxidative properties of this polysaccharide likely underlie its neuroprotective effect.展开更多
BACKGROUND: Induced differentiation strategies and cytochemical properties of human embryonic stem ceils (hESCs) have been investigated. However, the electrophysiological functions of tyrosine hydroxylase (TH)-po...BACKGROUND: Induced differentiation strategies and cytochemical properties of human embryonic stem ceils (hESCs) have been investigated. However, the electrophysiological functions of tyrosine hydroxylase (TH)-positive cells dedved from hESCs remain unclear. OBJECTIVE: To investigate the differentiation efficiency of TH-positive cells from hESCs in vitro using modified four-step culture methods, including embryoid body formation, and to examine the functional characteristics of the differentiated TH-positive cells using electrophysiological techniques. DESIGN, TIME AND SETTING: Neuroelectrophysiology was performed at the Reproductive Medicine Center and Stem Cell Research Center, Peking University Third Hospital, and the Neuroscience Research Institute and Department of Neurobiology, Peking University, from September 2004 to August 2008. MATERIALS: The hESC line, PKU-1.1, a monoclonal cell line derived from a pre-implantation human blastocyst in the Reproductive Medical Center of Peking University Third Hospital. The patch clamp recording system was provided by the Neuroscience Research Institute and Department of Neurobiology, Peking University. METHODS: The hESC line was induced to differentiate into TH-positive cells in vitro using a modified four-step culture method, including the formation of embryoid body, as well as the presence of sonic hedgehog and fibroblast growth factor 8. The cell karyotype was assessed by G-banding karyotype analysis techniques and specific markers were detected immunocytochemically. Whole-cell configuration was obtained after obtaining a tight seal of over 1 GΩ. Ionic currents were detected by holding the cells at -70 mV and stepping to test voltages between -80 and 40 mV in 10-mV increments in voltage-clamp configuration. MAIN OUTCOME MEASURES: We measured the cell karyotype, specific cell markers, and the electrophysiological properties of the voltage-gated ion channels on the cell membrane of TH-positive dopaminergic cells differentiated from our hESCs line in vitro. RESULTS: The differentiated cells had a consistent appearance, and the majority of cells (〉 90%) expressed TH and β-tubulion, as well as the neural progenitor marker, nestino Cell karyotype analysis demonstrated that all of the hESCs had a stable and normal karyotype (46, XX) after differentiation. In addition, patch clamp recording showed that the 10 recorded TH-positive cells exhibited a fast inward current when the test voltage depolarized to -30 mV, and a delayed outward current when the test voltage depolarized to -10 mV. The peak of inward current was obtained at voltage between 10 mV and 0 mV, while the peak of outward current was obtained at 40 mV. The average peak of inward current density was ( -50.05 ± 15.50) pA/pF, and the average peak of outward current density was (41.98 ± 13.55) pA/pE CONCLUSION: More than 90% of the differentiated hESC-derived cells induced by the modified four-step culture method exhibit dopaminergic neuronal properties, including general electrophysiological functional properties, such as functional potassium and sodium channels.展开更多
Depression refers to a series of mental health issues characterized by loss of interest and enjoyment in everyday life,low mood and selected emotional,cognitive,physical and behavioral symptoms.Depression is a common ...Depression refers to a series of mental health issues characterized by loss of interest and enjoyment in everyday life,low mood and selected emotional,cognitive,physical and behavioral symptoms.Depression is a common disorder,affecting 5–15%of the general population.When diagnosed as major depressive disorder(MDD),patients are currentlytreated with pharmacological agents such as serotonin or noradren- aline uptake inhibitors (SSRI or SNRI) or tricyclics.展开更多
In order to investigate the neurotoxicity of lipopolysaccharide (LPS) on the dopaminergic neurons of substantia nigra and the pathogenesis of Parkinson disease, LPS was stereotaxically infused into substantia nigra (S...In order to investigate the neurotoxicity of lipopolysaccharide (LPS) on the dopaminergic neurons of substantia nigra and the pathogenesis of Parkinson disease, LPS was stereotaxically infused into substantia nigra (SN). At different dosages and different time points with 5 μg LPS, the damage of the dopaminergic neurons in SN was observed by using tyrosine hydroxylase (TH) immunohistochemical staining. The results showed that 14 days after injection of 0.1 μg to 10 μg LPS into the rat SN, TH positive (TH + ) neurons in the SN were decreased by 5 %, 15 %, 20 %, 45 %, 96 % and 99 % respectively. After injection of 5 μg LPS, as compared with the control groups, TH + neurons began to decrease at 3rd day and obviously decrease at 14 th day, only 5 % of total cells, and almost disappeared 30 days later. The results suggested that LPS could induce the degeneration of dopaminergic neurons in the SN in a dose and time dependent manner.展开更多
As a late endosomal/lysosomal transport protein of the P5-type, ATP13A2 is capable of removing the abnormal accumulation of α-synuclein, which maintains the homeostasis of metal ions and polyamines in the central ner...As a late endosomal/lysosomal transport protein of the P5-type, ATP13A2 is capable of removing the abnormal accumulation of α-synuclein, which maintains the homeostasis of metal ions and polyamines in the central nervous system. Furthermore, ATP13A2 regulates the normal function of several organelles such as lysosomes, endoplasmic reticulum (ER) and mitochondria, and maintains the normal physiological activity of neural cells. Especially, ATP13A2 protects dopaminergic (DA) neurons against environmental or genetically induced Parkinson's disease (PD). As we all know, PD is a neurodegenerative disease characterized by the loss of DA neurons in the substantia nigra pars compacta. An increasing number of studies have reported that the loss-of- function of ATP13A2 affects normal physiological processes of various organelles, leading to abnormalities and the death of DA neurons. Previous studies in our laboratory have also shown that ATP13A2 deletion intensifies the neuroinflammatory response induced by astrocytes, thus inducing DA neuronal injury. In addition to elucidating the normal structure and function of ATP13A2, this review summarized the pathological mechanisms of ATP13A2 mutations leading to PD in existing literature studies, deepening the understanding of ATP13A2 in the pathological process of PD and other related neurodegenerative diseases. This review provides inspiration for investigators to explore the essential regulatory role of ATP13A2 in PD in the future.展开更多
Although the exact mechanism(s)of the degeneration of dopaminergic neurons in Parkinson’s disease(PD)is not well understood,mitochondrial dysfunction is proposed to play a central role.This proposal is strongly s...Although the exact mechanism(s)of the degeneration of dopaminergic neurons in Parkinson’s disease(PD)is not well understood,mitochondrial dysfunction is proposed to play a central role.This proposal is strongly strengthened by the findings that compromised mitochondrial functions and/or exposure to mitochondrial toxins such as rotenone,paraquat,or MPTP causes degeneration of the midbrain dopaminergic.展开更多
The defining neuropathological feature of Parkinson's disease (PD) is the loss of nigrostriatal dopaminergic (DA) projections. This results in striatal dopamine levels and a biochemical reduction of movement diso...The defining neuropathological feature of Parkinson's disease (PD) is the loss of nigrostriatal dopaminergic (DA) projections. This results in striatal dopamine levels and a biochemical reduction of movement disorders, such as a tremor at rest, rigidity of the limbs, bradykinesia, and postural instability (Kim et al., 2011; Kim et al., 2012; Burke and O'Malley, 2013; Leem et al., 2014; Namet al., 2014).展开更多
The over-expression of α-synuclein is a major factor in the death of dopaminergic neurons in a methamphetamine-induced model of Parkinson’s disease. In the present study, α-synuclein knockdown rats were created by ...The over-expression of α-synuclein is a major factor in the death of dopaminergic neurons in a methamphetamine-induced model of Parkinson’s disease. In the present study, α-synuclein knockdown rats were created by injecting α-synuclein-shRNA lentivirus stereotaxically into the right striatum of experimental rats. At 2 weeks post-injection, the rats were injected intraper-itoneally with methamphetamine to establish the model of Parkinson’s disease. Expression of α-synuclein mRNA and protein in the right striatum of the injected rats was significantly down-regulated. Food intake and body weight were greater in α-synuclein knockdown rats, and water intake and stereotyped behavior score were lower than in model rats. Striatal dopamine and tyrosine hydroxylase levels were significantly elevated in α-synuclein knockdown rats. Moreover, superoxide dismutase activity was greater in α-synuclein knockdown rat striatum, but the levels of reactive oxygen species, malondialdehyde, nitric oxide synthase and nitrogen monoxide were lower compared with model rats. We also found that α-synuclein knockdown inhibited metham-phetamine-induced neuronal apoptosis. These results suggest that α-synuclein has the capacity to reverse methamphetamine-induced apoptosis of dopaminergic neurons in the rat striatum by inhibiting oxidative stress and improving dopaminergic system function.展开更多
BACKGROUND: To date, the use of bone marrow-derived mesenchymal stem cells (MSCs) for the treatment of Parkinson’s disease have solely focused on in vivo animal models. Because of the number of influencing factors...BACKGROUND: To date, the use of bone marrow-derived mesenchymal stem cells (MSCs) for the treatment of Parkinson’s disease have solely focused on in vivo animal models. Because of the number of influencing factors, it has been difficult to determine a consistent outcome. OBJECTIVE: To establish an injury model in brain slices of substantia nigra and striatum using 1-methyl-4-phenylpytidinium ion (MPP+), and to investigate the effect of MSCs on dopaminergic neurons following MPP+ induced damage. DESIGN, TIME AND SETTING: An in vitro, randomized, controlled, animal experiment using I mmunohistochemistry was performed at the Laboratory of the Department of Anatomy, Fudan University between January 2004 and December 2006. MATERIALS: Primary MSC cultures were obtained from femurs and tibias of adult Sprague Dawley rats. Organotypic brain slices were isolated from substantia nigra and striatum of 1-day-old Sprague Dawley rat pups. Monoclonal antibodies for tyrosine hydroxylase (TH, 1:5 000) were from Santa Cruz (USA); goat anti-rabbit IgG antibodies labeled with FITC were from Boster Company (China). METHODS: Organotypic brain slices were cultured for 5 days in whole culture medium supplemented with 50% DMEM, 25% equine serum, and 25% Tyrode’s balanced salt solution. The medium was supplemented with 5 μg/mL Ara-C, and the culture was continued for an additional 5 days. The undergrowth of brain slices was discarded at day 10. Eugonic brain slices were cultured with basal media for an additional 7 days. The brain slices were divided into three groups: control, MPP+ exposure, and co-culture. For the MPP+ group, MPP+ (30 μmol/L) was added to the media at day 17 and brain slices were cultured for 4 days, followed by control media. For the co-culture group, the MPP+ injured brain slices were placed over MSCs in the well and were further cultured for 7 days. MAIN OUTCOME MEASURES: After 28 days in culture, neurite outgrowth was examined in the brain slices under phase-contrast microscopy. The percent of area containing dead cells in each brain slice was calculated with the help of propidium iodide fluorescence. Brain slices were stained with antibodies for TH to indicate the presence of dopaminergic neurons. Transmission electron microscopy was applied to determine the effect of MSCs on neuronal ultrastructure. RESULTS: Massive cell death and neurite breakage was observed in the MPP+ group. In addition, TH expression was significantly reduced, compared to the control group (P 〈 0.01). After 7 days in culture with MSCs, the co-culture group presented with less cell damage and reduced neurite breakage, and TH expression was increased. However, these changes were not significantly different from the MPP+ group (P 〈 0.01). Electron microscopy revealed reduced ultrastructural injury to cells in the brain slices. However, vacuoles were present in cells, with some autophagic vacuoles. CONCLUSION: Bone marrow-derived MSCs can promote survival of dopaminergic neurons following MPP+-induced neurotoxicity in co-cultures with substantia nigra and striatum brain slices.展开更多
基金supported by the National Natural Science Foundation of China,No.81771222(to LS)Guangzhou Key Research Program on Brain Science,Nos.202007030011,202206060001(to LS)the Program of Introducing Talents of Discipline to Universities of China,No.B14036(to KFS)。
文摘Midbrain dopaminergic neurons play an important role in the etiology of neurodevelopmental and neurodegenerative diseases.They also represent a potential source of transplanted cells for therapeutic applications.In vitro differentiation of functional midbrain dopaminergic neurons provides an accessible platform to study midbrain neuronal dysfunction and can be used to examine obstacles to dopaminergic neuronal development.Emerging evidence and impressive advances in human induced pluripotent stem cells,with tuned neural induction and differentiation protocols,makes the production of induced pluripotent stem cell-derived dopaminergic neurons feasible.Using SB431542 and dorsomorphin dual inhibitor in an induced pluripotent stem cell-derived neural induction protocol,we obtained multiple subtypes of neurons,including 20%tyrosine hydroxylase-positive dopaminergic neurons.To obtain more dopaminergic neurons,we next added sonic hedgehog(SHH)and fibroblast growth factor 8(FGF8)on day 8 of induction.This increased the proportion of dopaminergic neurons,up to 75%tyrosine hydroxylase-positive neurons,with 15%tyrosine hydroxylase and forkhead box protein A2(FOXA2)co-expressing neurons.We further optimized the induction protocol by applying the small molecule inhibitor,CHIR99021(CHIR).This helped facilitate the generation of midbrain dopaminergic neurons,and we obtained 31-74%midbrain dopaminergic neurons based on tyrosine hydroxylase and FOXA2 staining.Thus,we have established three induction protocols for dopaminergic neurons.Based on tyrosine hydroxylase and FOXA2 immunostaining analysis,the CHIR,SHH,and FGF8 combined protocol produces a much higher proportion of midbrain dopaminergic neurons,which could be an ideal resource for tackling midbrain-related diseases.
基金National Natural Science Foundation of China(8146055681760658).
文摘OBJECTIVE To research the effect of naringenin(NAR) on LPS-induced dopaminergic neurons damage and its potential mechanism.METHODS Rats were randomly divided into the following six groups(n=10):control(0.9% NaCl),NAR alone(100 mg·kg-1),LPS(5 μg),LPS+NAR(50 mg·kg-1) and LPS+NAR(100 mg·kg-1).Rats were received a single LPS unilateral injection into the SN pars compacts,after seven daily intragastric administration of NAR,rats′ behavior was analyzed by rotarod test.Then,the expression of TH,IBA-1 and NLRP3 inflammasome were analyzed by Western blotting and immunofluorescence.In vitro experiments,BV-2 cel s were treated with different doses of NAR,and 1 h later,LPS(1 g·L^(-1)) was added to the medium for 24 h,then collect the culture medium and protein for later experiments.The production of IL-1β and IL-18 in culture medium were tested by ELISA,and the production of NO was detected by Griess reagent.The expression of IBA-1,NLRP3 and p-caspase 1 were detected by Western blotting.MN9 D cells were co-cultured with BV2 cells to mimic the animal experiments.MTT assay was used to analyzed the viability of MN9 D cells,and the expression of TH was detected by Western blotting.RESULTS NAR(100 mg · kg-1) could significantly improve the time of rats on the rotating(116.73 s vs 185.45 s,P<0.05).The result of the pathological analysis also suggested that NAR could decrease the activation of microglia as well as the expression of NLRP3 Inflammasome.In addition,NAR also could suppress the expression of pro-inflammatory factor levels,such as IL-1β(P<0.05),IL-18(P<0.05),and the protection of NAR could be inhibited by siR NA NLRP3.Moreover,an in vitro co-culture system with BV2 and MN9 D cells wasused to find the protection of NAR must via microglia,while there is no effect of NAR were directly added to MN9 D cells.CONCLUSION NAR protection of LPS-induced dopaminergic neurons damage might be through mediating NLRP3 inflammasome.
基金supported by the National Key Research and Development Program of China,Nos.2017YFE0122900(to BH),2019YFA0110800(to WL),2019YFA0903802(to YW),2021YFA1101604(to LW),2018YFA0108502(to LF),and 2020YFA0804003(to JW)the National Natural Science Foundation of China,Nos.31621004(to WL,BH)and 31970821(to YW)+1 种基金CAS Project for Young Scientists in Basic Research,No.YSBR-041(to YW)Joint Funds of the National Natural Science Foundation of China,No.U21A20396(to BH)。
文摘Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson’s disease.However,transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche.Here,we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells.These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion,effectively maintaining axonal integrity in vitro.Importantly,midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts.Overall,our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation.
文摘Objective To evaluate the role of thrombin-activated microglia in the neurodegeneration of nigral dopaminergic neurons in the rat substantia nigra (SN) in vivo. Methods After stereotaxic thrombin injection into unilateral SN of rats, immunostaining, reverse transcription polymerase chain reaction (RT-PCR) and biochemical methods were used to observe tyrosine hydroxylase (TH) irnmunoreactive positive cells, microglia activation, nitric oxide (NO) amount and inducible nitricoxide synthase (iNOS) expression. Results (1) Selective damage to dopaminergic neurons was produced after thrombin injection, which was evidenced by loss of TH imrnunostaining in time-dependent manner; (2) Strong microglial activation was observed in the SN; (3) RT-PCR demonstrated the early and transient expression of neurotoxic factors iNOS mRNA in the SN. Immunofluorescence results found that thrombin induced expression of iNOS in microglia. The NO production in the thrombininjected rats was significantly higher than that of controls (P 〈 0.05). Conclusion Thrombin intranigral injection can injure the dopaminergic neurons in the SN. Thrombin-induced microglia activation precedes dopaminergic neuron degeneration, which suggest that activation of microglia and release of NO may play important roles in dopaminergic neuronal death in the SN.
基金supported by the Medical and Health Technology Development Plan of Shandong Province of China,No.2011HD009(to AHW)the Chinese Medicine Science and Technology Development Plan Project of Shandong Province of China,No.2017-163(to AHW)+1 种基金the Natural Science Foundation of Shandong Province of China,No.ZR2016HP23(to AHW)the Science and Technology Development Plan Project of Taian City of China,No.2017NS0151(to XCS)
文摘Accumulating studies suggest that neuroinflammation characterized by microglial overactivation plays a pivotal role in the pathogenesis of Parkinson’s disease.As such,inhibition of microglial overactivation might be a promising treatment strategy to delay the onset or slow the progression of Parkinson’s disease.Ginsenoside Rbl,the most active ingredient of ginseng,reportedly exerts neuroprotective effects by suppressing inflammation in vitro.The present study aimed to evaluate the neuroprotective and anti-inflammatory effects of ginsenoside Rbl in a lipopolysaccharide-induced rat Parkinson’s disease model.Rats were divided into four groups.In the control group,sham-operated rats were intraperitoneally administered normal saline for 14 consecutive days.In the ginsenoside Rbl group,ginsenoside Rb1(20 mg/kg)was intraperitoneally injected for 14 consecutive days after sham surgery.In the lipopolysaccharide group,a single dose of lipopolysaccharide was unilaterally microinjected into the rat substantial nigra to establish the Parkinson’s disease model.Lipopolysaccharide-injected rats were treated with normal saline for 14 consecutive days.In the ginsenoside Rbl +lipopolysaccharide group,lipopolysaccharide was unilaterally microinjected into the rat substantial nigra.Subsequently,ginsenoside Rbl was intraperitoneally injected for 14 consecutive days.To investigate the therapeutic effects of ginsenoside Rbl,behavioral tests were performed on day 15 after lipopolysaccharide injection.We found that ginsenoside Rbl treatment remarkably reduced apomorphine-induced rotations in lipopolysaccharide-treated rats compared with the lipopolysaccharide group.To investigate the neurotoxicity of lipopolysaccharide and potential protective effect of ginsenoside Rbl,contents of dopamine and its metabolites in the striatum were measured by high-performance liquid chromatography.Compared with the lipopolysaccharide group,ginsenoside Rbl obviously attenuated the lipopolysaccharide-induced depletion of dopamine and its metabolites in the striatum.To further explore the neuroprotective effect of ginsenoside Rbl against lipopolysaccharide-induced neurotoxicity,immunohistochemistry and western blot assay of tyrosine hydroxylase were performed to evaluate dopaminergic neuron degeneration in the substantial nigra par compacta.The results showed that lipopolysaccharide injection caused a large loss of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra and a significant decrease in overall tyrosine hydroxylase expression.However,ginsenoside Rb1 noticeably reversed these changes.To investigate whether the neuroprotective effect of ginsenoside Rbl was associated with inhibition of lipopolysaccharide-induced microglial activation,we examined expression of the microglia marker Iba-1.Our results confirmed that lipopolysaccharide injection induced a significant increase in Iba-1 expression in the substantia nigra;however,ginsenoside Rbl effectively suppressed lipopolysaccharide-induced microglial overactivation.To elucidate the inhibitory mechanism of ginsenoside Rb1,we examined expression levels of inflammatory mediators(tumor necrosis factor-a,interleukin-1β,inducible nitric oxide synthase,and cyclooxygenase 2)and phosphorylation of nuclear factor kappa B signaling-related proteins(IκB,IKK)in the substantia nigra with enzyme-linked immunosorbent and western blot assays.Our results revealed that compared with the control group,phosphorylation and expression of inflammatory mediators IκB and IKK in the substantia nigra of lipopolysaccharide group rats were significantly increased;whereas,ginsenoside Rbl obviously reduced lipopolysaccharide-induced changes on the lesioned side of the substantial nigra par compacta.These findings confirm that ginsenoside Rbl can inhibit inflammation induced by lipopolysaccharide injection into the substantia nigra and protect dopaminergic neurons,which may be related to its inhibition of the nuclear factor kappa B signaling pathway.This study was approved by the Experimental Animal Ethics Committee of Shandong University of China in April 2016(approval No.KYLL-2016-0148).
基金the National Natural Science Foundation of China, No.30300115
文摘BACKGROUND:It has been reported that the conversion of neural stem cells into dopaminergic neurons in vitro can be increased through specific cytokine combinations. Such neural stem cell-derived dopaminergic neurons could be used for the treatment of Parkinson’s disease. However, little is known about the differences in dopaminergic differentiation between neural stem cells derived from adult and embryonic rats. OBJECTIVE: To study the ability of rat adult and embryonic-derived neural stem cells to differentiate into dopaminergic neurons in vitro. DESIGN: Randomized grouping design. SETTING: Department of Neurosurgery in the First Affiliated Hospital of Sun Yat-sen University. MATERIALS: This experiment was performed at the Surgical Laboratory in the First Affiliated Hospital of Sun Yat-sen University (Guangzhou, Guangdong, China) from June to December 2007. Eight, adult, male, Sprague Dawley rats and eight, pregnant, Sprague Dawley rats (embryonic day 14 or 15) were provided by the Experimental Animal Center of Sun Yat-sen University. METHODS: Neural stem cells derived from adult and embryonic rats were respectively cultivated in serum-free culture medium containing epidermal growth factor and basic fibroblast growth factor. After passaging, neural stem cells were differentiated in medium containing interleukin-1α, interleukin-11, human leukemia inhibition factor, and glial cell line-derived neurotrophic factor. Six days later, cells were analyzed by immunocytochemistry and flow cytometry. MAIN OUTCOME MEASURES: Alterations in cellular morphology after differentiation of neural stem cells derived from adult and embryonic rats; and percentage of tyrosine hydroxylase-positive neurons in the differentiated cells. RESULTS: Neural stem cells derived from adult and embryonic rats were cultivated in differentiation medium. Six days later, differentiated cells were immunoreactive for tyrosine hydroxylase. The percentage of tyrosine hydroxylase positive neurons was (5.6 ± 2.8)% and (17.8 ± 4.2)% for adult and embryonic cells, respectively, with a significant difference between the groups (P 〈 0.01). CONCLUSION: Neural stem cells from embryonic rats have a higher capacity to differentiate into dopaminergic neurons than neural stem cells derived from adult rats.
基金the National Natural Science Foundation of China, No.30300115
文摘BACKGROUND: Dopaminergic neurons differentiated from neural stem cells have been successfully used in the treatment of rat models of Parkinson's disease; however, the survival rate of transplanted cells has been low. Most cells die by apoptosis as a result of overloaded intracellular calcium and the formation of oxygen free radicals. OBJECTIVE: To observe whether survival of transplanted cells, transplantation efficacy, and dopaminergic differentiation from neural stem cells is altered by Panax notoginseng saponins (PNS) in a rat model of Parkinson's disease. DESIGN, TIME AND SETTING: Cellular and molecular biology experiments with randomized group design. The experiment was performed at the Animal Experimental Center, First Hospital of Sun Yat-sen University from April to October 2007. MATERIALS: Thirty-two adult, healthy, male Sprague Dawley rats, and four healthy Sprague Dawley rat embryos at gestational days 14-15 were selected. The right ventral mesencephalon was injected with 6-hydroxydopamine to establish a model of Parkinson's disease. 6-hydroxydopamine and apomorphine were purchased from Sigma, USA. METHODS: Neural stem cells derived from the mesencephalon of embryonic rats were cultivated and passaged in serum-free culture medium. Lesioned animals were randomly divided into four groups (n = 8): dopaminergic neuron, dopaminergic neuron + PNS, PNS, and control. The dopaminergic neuron group was injected with 3 μL cell suspension containing dopaminergic neurons differentiated from neural stem cells. The dopaminergic neurons + PNS group received 3 μ L dopaminergic cell suspension combined with PNS (250 mg/L). The PNS group received 3 μL PNS (250 mg/L), and the control group received 3 μL DMEM/F12 culture medium. MAIN OUTCOME MEASURES: The rats were transcardially perfused with 4% paraformaldehyde at 60 days post-grafting for immunohistochemistry. The rats were intraperitoneally injected with apomorphine (0.5 mg/kg) to induce rotational behavior. RESULTS: Cell counts of tyrosine hydroxylase-positive neurons in the dopaminergic neuron + PNS group were (732±82.6) cells/400-fold field. This was significantly greater than the dopaminergic neuron group [(326 ± 34.8) cells/400-fold field, P 〈 0.01]. Compared to the control group, the rotational asymmetry of rats that received dopaminergic neuron transplants was significantly decreased, beginning at 20 days after operation (P 〈 0.01). Rotational asymmetry was further reduced between 10-60 days post-surgery in the dopaminergic neuron + PNS group, compared to the dopaminergic neuron group (P 〈 0.01). CONCLUSION: Panax notoginseng saponins can increase survival and effectiveness of dopaminergic neurons differentiated from neural stem cells for transplantation in a rat model of Parkinson's disease.
基金supported by the National Natural Sciences Foundation of China,No.81770460(to YCL)the Postdoctoral Research Fellowship of the Saskatchewan Health Research Foundation,No.SHRF,4144(to YCL)+2 种基金the third level of the Chuanshan Talent project of the University of South China,No.2017CST20(to YCL)the Aid Program,No.2017KJ268 and the Key Lab for Clinical Anatomy&Reproductive Medicine,No.2017KJ182 from the Science and Technology Bureau of Hengyang City,China(to YCL and XC)the Postgraduate Student Research Innovation Projects of Hunan Province,China,No.CX2018B62(to ABG)
文摘Prolonged activation of adenosine A1 receptor likely leads to damage of dopaminergic neurons and subsequent development of neurodegenerative diseases.However,the pathogenesis underlying long-term adenosine A1 receptor activation-induced neurodegeneration remains unclear.In this study,rats were intraperitoneally injected with 5 mg/kg of the adenosine A1 receptor agonist N6-cyclopentyladenosine(CPA)for five weeks.The mobility of rats was evaluated by forced swimming test,while their cognitive capabilities were evaluated by Y-maze test.Expression of sortilin,α-synuclein,p-JUN,and c-JUN proteins in the substantia nigra were detected by western blot analysis.In addition,immunofluorescence staining of sortilin andα-synuclein was performed to detect expression in the substantia nigra.The results showed that,compared with adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine(5 mg/kg)+CPA co-treated rats,motor and memory abilities were reduced,surface expression of sortin andα-synuclein in dopaminergic neurons was reduced,and total sortilin and totalα-synuclein were increased in CPA-treated rats.MN9D cells were incubated with 500 nM CPA alone or in combination with 10μM SP600125(JNK inhibitor)for 48 hours.Quantitative real-time polymerase chain reaction analysis of sortilin andα-synuclein mRNA levels in MN9D cells revealed upregulated sortilin expression in MN9D cells cultured with CPA alone,but the combination of CPA and SP600125 could inhibit this expression.Predictions made using Jasper,PROMO,and Alibaba online databases identified a highly conserved sequence in the sortilin promoter that was predicted to bind JUN in both humans and rodents.A luciferase reporter assay of sortilin promoter plasmid-transfected HEK293T cells confirmed this prediction.After sortilin expression was inhibited by sh-SORT1,expression of p-JUN and c-JUN was detected by western blot analysis.Long-term adenosine A1 receptor activation levels upregulatedα-synuclein expression at the post-transcriptional level by affecting sortilin expression.The online tool Raptor-X-Binding and Discovery Studio 4.5 prediction software predicted that sortilin can bind toα-synuclein.Co-immunoprecipitation revealed an interaction between sortilin andα-synuclein in MN9D cells.Our findings indicate that suppression of prolonged adenosine A1 receptor activation potently inhibited sortilin expression andα-synuclein accumulation,and dramatically improved host cognition and kineticism.This study was approved by the University Committee of Animal Care and Supply at the University of Saskatchewan(approval No.AUP#20070090)in March 2007 and the Animals Ethics Committee of University of South China(approval No.LL0387-USC)in June 2017.
基金the Natural Science Foundation of Jiangsu Department of Education, No. 02KJB310009
文摘BACKGROUND: Substantia nigra is deep in position and limited in range, the glial cell line-derived neurotrophic factor (GDNF) injection directly into substantia nigra has relatively greater damages with higher difficulty. GDNF injection into striatum, the target area of dopaminergic neuron, may protect the dopaminergic neurons in the compact part of substantia nigra through retrograde transport. OBJECTIVE: To investigate the protective effect of intrastriatal GDNF on dopaminergic neurons in the substantia nigra of mice with Parkinson disease (PD), and analyze the action pathway. DESIGN: A controlled observation. SETTING: Neurobiological Laboratory of Xuzhou Medical College. MATERIALS: Twenty-four male Kunming mice of 7 - 8 weeks old were used. GDNF, 1-methy1-4-pheny1-1,2,3,6-tetrahydropyridine (MPTP) were purchased from Sigma Company (USA); LEICAQWin image processing and analytical system. METHODS: The experiments were carded out in the Neurobiological Laboratory of Xuzhou Medical College from September 2005 to October 2006. The PD models were established in adult KunMing mice by intraperitoneal injection of MPTP. The model mice were were randomly divided into four groups with 6 mice in each group: GDNF 4-day group, phosphate buffer solution (PSB) 4-day group, GDNF 6-day group and PSB 6-day group. Mice in the GDNF 4 and 6-day groups were administrated with 1 μ L GDNF solution (20 μ g/L, dispensed with 0.01 mol/L PBS) injected into right striatum at 4 and 6 days after model establishment. Mice in the PSB 4 and 6-day groups were administrated with 0.01 mol/L PBS of the same volume to the same injection at corresponding time points. ② On the 12^th day after model establishment, the midbrain tissue section of each mice was divided into 3 areas from rostral to caudal sides. The positive neurons of tyroxine hydroxylase (TH) and calcium binding protein (CB) with obvious nucleolus and clear outline were randomly selected for the measurement, and the number of positive neurons in unit area was counted. MAIN OUTCOME MEASURES: Number of positive neurons of TH and CB in midbrain substantia nigra of mice in each group. RESULTS: All the 24 mice were involved in the analysis of results. The numbers of TH^+ and CB^+ neurons in the GDNF 4-day group (54.33±6.92, 46.33±5.54) were obviously more than those in the PBS 4-day group (27.67±5.01, 21.50±5.96, P 〈 0.01). The numbers of TH^+ and CB^+ neurons in the GDNF 6-day group (75.67±5.39, 69.67±8.69) were obviously more than those in the PBS 6-day group (27.17±4.50, 21.33 ±5.72, P 〈 0.01) and those in the GDNF 4-day group (P 〈 0.01 ). CONCLUSION: Intrastriatal GDNF can protect dopaminergic neurons in substantia nigra of PD mice, and it may be related to the increase of CB expression.
基金supported by ANID-FONDECYT 1170033(to JSA)ANID-STINT-CONICYT CS2018-7940(to JSA,IN,JI,MV)Swedish Research Council grant 2015-04222 to BM.
文摘Astrocytes protect neurons by modulating neuronal function and survival.Astrocytes support neurons in several ways.They provide energy through the astrocyte-neuron lactate shuttle,protect neurons from excitotoxicity,and internalize neuronal lipid droplets to degrade fatty acids for neuronal metabolic and synaptic support,as well as by their high capacity for glutamate uptake and the conversion of glutamate to glutamine.A recent reported astrocyte system for protection of dopamine neurons against the neurotoxic products of dopamine,such as aminochrome and other o-quinones,were generated under neuromelanin synthesis by oxidizing dopamine catechol structure.Astrocytes secrete glutathione transferase M2-2 through exosomes that transport this enzyme into dopaminergic neurons to protect these neurons against aminochrome neurotoxicity.The role of this new astrocyte protective mechanism in Parkinson´s disease is discussed.
基金This work was supported by the National Natural Science Foundation of China,Nos.81671240(to SZZ),81560220(to GHL)the Youth Science Foundation of Jiangxi Province of China,No.20151BAB215014(to GHL)Health and Family Planning Commission of Jiangxi Province of China,No.20195109(to GHL)。
文摘The expression of major histocompatibility complex class I(MHC-I),a key antigen-presenting protein,can be induced in dopaminergic neurons in the substantia nigra,thus indicating its possible involvement in the occurrence and development of Parkinson’s disease.However,it remains unclear whether oxidative stress induces Parkinson’s disease through the MHC-I pathway.In the present study,polymerase chain reaction and western blot assays were used to determine the expression of MHC-I in 1-methyl-4-phenylpyridinium(MPP+)-treated SH-SY5Y cells and a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced Parkinson’s disease mouse model.The findings revealed that MHC-I was expressed in both models.To detect whether the expression of MHC-I was able to trigger the infiltration of cytotoxic T cells,immunofluorescence staining was used to detect cytotoxic cluster of differentiation 8(CD8)+T cell infiltration in the substantia nigra of MPTP-treated mice.The results indicated that the presentation of MHC-I in dopaminergic neurons was indeed accompanied by an increase in the number of CD8+T cells.Moreover,in MPTP-induced Parkinson’s disease model mice,the genetic knockdown of endogenous MHC-I,which was caused by injecting specific adenovirus into the substantia nigra,led to a significant reduction in CD8+T cell infiltration and alleviated dopaminergic neuronal death.To further investigate the molecular mechanisms of oxidative stress-induced MHC-I presentation,the expression of PTEN-induced kinase 1(PINK1)was silenced in MPP+-treated SH-SY5Y cells using specific small interfering RNA(siRNA),and there was more presentation of MHC-I in these cells compared with control siRNA-treated cells.Taken together,MPP+-/MPTP-induced oxidative stress can trigger MHC-I presentation and autoimmune activation,thus rendering dopaminergic neurons susceptible to immune cells and degeneration.This may be one of the mechanisms of oxidative stress-induced Parkinson’s disease,and implies the potential neuroprotective role of PINK1 in oxidative stress-induced MHC-I presentation.All animal experiments were approved by the Southern Medical University Ethics Committee(No.81802040,approved on February 25,2018).
基金financially supported by grants from the Natural Science Foundation of Shandong Province of China,No.ZR2011HQ008,ZR2011HM044
文摘The present study aimed to determine whether a polysaccharide obtained fromSpirulina platensis shows protective effects on dopaminergic neurons. A Parkinson’s disease model was established through the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyr-idine (MPTP) in C57BL/6J mice. Prior to the MPTP injection, some mice were pretreated with intraperitoneal injections of a polysaccharide derived fromSpirulina platensis once daily for 10 days. The results showed that the immunoreactive staining and mRNA expression of the dopa-mine transporter and tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, in the substantia nigra, were signiifcantly increased in mice pretreated with 800 mg/kg of the poly-saccharide compared with those in MPTP-treated mice. The activities of superoxide dismutase and glutathione peroxidase in the serum and midbrain were also increased signiifcantly in mice injected with MPTP after pretreatment with the polysaccharide fromSpirulina platensis. By con-trast, the activity of monoamine oxidase B in serum and midbrain maintained unchanged. These experimental ifndings indicate that the polysaccharide obtained fromSpirulina platensis plays a protective role against the MPTP-induced loss of dopaminergic neurons in C57BL/6J mice, and that the antioxidative properties of this polysaccharide likely underlie its neuroprotective effect.
基金the National Natural Science Foundation of China, No. 30672239
文摘BACKGROUND: Induced differentiation strategies and cytochemical properties of human embryonic stem ceils (hESCs) have been investigated. However, the electrophysiological functions of tyrosine hydroxylase (TH)-positive cells dedved from hESCs remain unclear. OBJECTIVE: To investigate the differentiation efficiency of TH-positive cells from hESCs in vitro using modified four-step culture methods, including embryoid body formation, and to examine the functional characteristics of the differentiated TH-positive cells using electrophysiological techniques. DESIGN, TIME AND SETTING: Neuroelectrophysiology was performed at the Reproductive Medicine Center and Stem Cell Research Center, Peking University Third Hospital, and the Neuroscience Research Institute and Department of Neurobiology, Peking University, from September 2004 to August 2008. MATERIALS: The hESC line, PKU-1.1, a monoclonal cell line derived from a pre-implantation human blastocyst in the Reproductive Medical Center of Peking University Third Hospital. The patch clamp recording system was provided by the Neuroscience Research Institute and Department of Neurobiology, Peking University. METHODS: The hESC line was induced to differentiate into TH-positive cells in vitro using a modified four-step culture method, including the formation of embryoid body, as well as the presence of sonic hedgehog and fibroblast growth factor 8. The cell karyotype was assessed by G-banding karyotype analysis techniques and specific markers were detected immunocytochemically. Whole-cell configuration was obtained after obtaining a tight seal of over 1 GΩ. Ionic currents were detected by holding the cells at -70 mV and stepping to test voltages between -80 and 40 mV in 10-mV increments in voltage-clamp configuration. MAIN OUTCOME MEASURES: We measured the cell karyotype, specific cell markers, and the electrophysiological properties of the voltage-gated ion channels on the cell membrane of TH-positive dopaminergic cells differentiated from our hESCs line in vitro. RESULTS: The differentiated cells had a consistent appearance, and the majority of cells (〉 90%) expressed TH and β-tubulion, as well as the neural progenitor marker, nestino Cell karyotype analysis demonstrated that all of the hESCs had a stable and normal karyotype (46, XX) after differentiation. In addition, patch clamp recording showed that the 10 recorded TH-positive cells exhibited a fast inward current when the test voltage depolarized to -30 mV, and a delayed outward current when the test voltage depolarized to -10 mV. The peak of inward current was obtained at voltage between 10 mV and 0 mV, while the peak of outward current was obtained at 40 mV. The average peak of inward current density was ( -50.05 ± 15.50) pA/pF, and the average peak of outward current density was (41.98 ± 13.55) pA/pE CONCLUSION: More than 90% of the differentiated hESC-derived cells induced by the modified four-step culture method exhibit dopaminergic neuronal properties, including general electrophysiological functional properties, such as functional potassium and sodium channels.
基金funded by Ministry of Education,University and Research(MIUR)ex-60% research fund University of Brescia,Italy
文摘Depression refers to a series of mental health issues characterized by loss of interest and enjoyment in everyday life,low mood and selected emotional,cognitive,physical and behavioral symptoms.Depression is a common disorder,affecting 5–15%of the general population.When diagnosed as major depressive disorder(MDD),patients are currentlytreated with pharmacological agents such as serotonin or noradren- aline uptake inhibitors (SSRI or SNRI) or tricyclics.
基金ThisProjectwassupportedbyagrantfromNationalNaturalSciencesFoundationofChina (No .30 170 334)
文摘In order to investigate the neurotoxicity of lipopolysaccharide (LPS) on the dopaminergic neurons of substantia nigra and the pathogenesis of Parkinson disease, LPS was stereotaxically infused into substantia nigra (SN). At different dosages and different time points with 5 μg LPS, the damage of the dopaminergic neurons in SN was observed by using tyrosine hydroxylase (TH) immunohistochemical staining. The results showed that 14 days after injection of 0.1 μg to 10 μg LPS into the rat SN, TH positive (TH + ) neurons in the SN were decreased by 5 %, 15 %, 20 %, 45 %, 96 % and 99 % respectively. After injection of 5 μg LPS, as compared with the control groups, TH + neurons began to decrease at 3rd day and obviously decrease at 14 th day, only 5 % of total cells, and almost disappeared 30 days later. The results suggested that LPS could induce the degeneration of dopaminergic neurons in the SN in a dose and time dependent manner.
基金The work reported herein was supported by the grants from the National Natural Science Foundation of China(Grant No.81803505)Jiangsu Research Hospital Association for Precision Medication(Grant No.JY202134).
文摘As a late endosomal/lysosomal transport protein of the P5-type, ATP13A2 is capable of removing the abnormal accumulation of α-synuclein, which maintains the homeostasis of metal ions and polyamines in the central nervous system. Furthermore, ATP13A2 regulates the normal function of several organelles such as lysosomes, endoplasmic reticulum (ER) and mitochondria, and maintains the normal physiological activity of neural cells. Especially, ATP13A2 protects dopaminergic (DA) neurons against environmental or genetically induced Parkinson's disease (PD). As we all know, PD is a neurodegenerative disease characterized by the loss of DA neurons in the substantia nigra pars compacta. An increasing number of studies have reported that the loss-of- function of ATP13A2 affects normal physiological processes of various organelles, leading to abnormalities and the death of DA neurons. Previous studies in our laboratory have also shown that ATP13A2 deletion intensifies the neuroinflammatory response induced by astrocytes, thus inducing DA neuronal injury. In addition to elucidating the normal structure and function of ATP13A2, this review summarized the pathological mechanisms of ATP13A2 mutations leading to PD in existing literature studies, deepening the understanding of ATP13A2 in the pathological process of PD and other related neurodegenerative diseases. This review provides inspiration for investigators to explore the essential regulatory role of ATP13A2 in PD in the future.
文摘Although the exact mechanism(s)of the degeneration of dopaminergic neurons in Parkinson’s disease(PD)is not well understood,mitochondrial dysfunction is proposed to play a central role.This proposal is strongly strengthened by the findings that compromised mitochondrial functions and/or exposure to mitochondrial toxins such as rotenone,paraquat,or MPTP causes degeneration of the midbrain dopaminergic.
文摘The defining neuropathological feature of Parkinson's disease (PD) is the loss of nigrostriatal dopaminergic (DA) projections. This results in striatal dopamine levels and a biochemical reduction of movement disorders, such as a tremor at rest, rigidity of the limbs, bradykinesia, and postural instability (Kim et al., 2011; Kim et al., 2012; Burke and O'Malley, 2013; Leem et al., 2014; Namet al., 2014).
基金supported by the National Natural Science Foundation of China,No.81072506
文摘The over-expression of α-synuclein is a major factor in the death of dopaminergic neurons in a methamphetamine-induced model of Parkinson’s disease. In the present study, α-synuclein knockdown rats were created by injecting α-synuclein-shRNA lentivirus stereotaxically into the right striatum of experimental rats. At 2 weeks post-injection, the rats were injected intraper-itoneally with methamphetamine to establish the model of Parkinson’s disease. Expression of α-synuclein mRNA and protein in the right striatum of the injected rats was significantly down-regulated. Food intake and body weight were greater in α-synuclein knockdown rats, and water intake and stereotyped behavior score were lower than in model rats. Striatal dopamine and tyrosine hydroxylase levels were significantly elevated in α-synuclein knockdown rats. Moreover, superoxide dismutase activity was greater in α-synuclein knockdown rat striatum, but the levels of reactive oxygen species, malondialdehyde, nitric oxide synthase and nitrogen monoxide were lower compared with model rats. We also found that α-synuclein knockdown inhibited metham-phetamine-induced neuronal apoptosis. These results suggest that α-synuclein has the capacity to reverse methamphetamine-induced apoptosis of dopaminergic neurons in the rat striatum by inhibiting oxidative stress and improving dopaminergic system function.
文摘BACKGROUND: To date, the use of bone marrow-derived mesenchymal stem cells (MSCs) for the treatment of Parkinson’s disease have solely focused on in vivo animal models. Because of the number of influencing factors, it has been difficult to determine a consistent outcome. OBJECTIVE: To establish an injury model in brain slices of substantia nigra and striatum using 1-methyl-4-phenylpytidinium ion (MPP+), and to investigate the effect of MSCs on dopaminergic neurons following MPP+ induced damage. DESIGN, TIME AND SETTING: An in vitro, randomized, controlled, animal experiment using I mmunohistochemistry was performed at the Laboratory of the Department of Anatomy, Fudan University between January 2004 and December 2006. MATERIALS: Primary MSC cultures were obtained from femurs and tibias of adult Sprague Dawley rats. Organotypic brain slices were isolated from substantia nigra and striatum of 1-day-old Sprague Dawley rat pups. Monoclonal antibodies for tyrosine hydroxylase (TH, 1:5 000) were from Santa Cruz (USA); goat anti-rabbit IgG antibodies labeled with FITC were from Boster Company (China). METHODS: Organotypic brain slices were cultured for 5 days in whole culture medium supplemented with 50% DMEM, 25% equine serum, and 25% Tyrode’s balanced salt solution. The medium was supplemented with 5 μg/mL Ara-C, and the culture was continued for an additional 5 days. The undergrowth of brain slices was discarded at day 10. Eugonic brain slices were cultured with basal media for an additional 7 days. The brain slices were divided into three groups: control, MPP+ exposure, and co-culture. For the MPP+ group, MPP+ (30 μmol/L) was added to the media at day 17 and brain slices were cultured for 4 days, followed by control media. For the co-culture group, the MPP+ injured brain slices were placed over MSCs in the well and were further cultured for 7 days. MAIN OUTCOME MEASURES: After 28 days in culture, neurite outgrowth was examined in the brain slices under phase-contrast microscopy. The percent of area containing dead cells in each brain slice was calculated with the help of propidium iodide fluorescence. Brain slices were stained with antibodies for TH to indicate the presence of dopaminergic neurons. Transmission electron microscopy was applied to determine the effect of MSCs on neuronal ultrastructure. RESULTS: Massive cell death and neurite breakage was observed in the MPP+ group. In addition, TH expression was significantly reduced, compared to the control group (P 〈 0.01). After 7 days in culture with MSCs, the co-culture group presented with less cell damage and reduced neurite breakage, and TH expression was increased. However, these changes were not significantly different from the MPP+ group (P 〈 0.01). Electron microscopy revealed reduced ultrastructural injury to cells in the brain slices. However, vacuoles were present in cells, with some autophagic vacuoles. CONCLUSION: Bone marrow-derived MSCs can promote survival of dopaminergic neurons following MPP+-induced neurotoxicity in co-cultures with substantia nigra and striatum brain slices.