Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time ...Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time depth data with a digital terrain map, This study presents the concept of using image processing techniques in the underwater terrain matching process. A traditional gray-scale histogram of an image is enriched by incorporation with spatial information in pixels. Edge comer pixels are then defined and used to construct an edge comer histogram, which employs as a template to scan the digital terrain map and estimate the fixes of the vehicle by searching the correlation peak. Simulations are performed to investigate the robustness of the proposed method, particularly in relation to its sensitivity to background noise, the scale of real-time images, and the travel direction of the vehicle. At an image resolution of 1 m2/pixel, the accuracy of localization is more than 10 meters.展开更多
船位推算是水下航行器自主导航定位的重要手段。当采用对流工作模式的多普勒计程仪进行船位推算时,测速精度受海流影响较大,由此引起的船位推算误差较大。针对此问题,提出一种基于机动目标"当前"统计模型的水下组合导航模式,...船位推算是水下航行器自主导航定位的重要手段。当采用对流工作模式的多普勒计程仪进行船位推算时,测速精度受海流影响较大,由此引起的船位推算误差较大。针对此问题,提出一种基于机动目标"当前"统计模型的水下组合导航模式,通过增加加速度观测信息,采用加速度均值、方差自适应Kalman滤波算法实现线运动参数的估计和流速修正并进行了仿真实验验证。仿真结果表明,使用本方法能得到较为准确的流速估计值,相同条件下使用加速度信息辅助船位推算比纯船位推算的定位精度有较大提高,其精度优于1 n mile/h。展开更多
基金Supported by the National Natural Nature Science Foundation of China (Grant No. 41376102), Fundamental Research Funds for the Central Universities (Gant No. HEUCF150514) and Chinese Scholarship Council (Grant No. 201406680029).
文摘Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time depth data with a digital terrain map, This study presents the concept of using image processing techniques in the underwater terrain matching process. A traditional gray-scale histogram of an image is enriched by incorporation with spatial information in pixels. Edge comer pixels are then defined and used to construct an edge comer histogram, which employs as a template to scan the digital terrain map and estimate the fixes of the vehicle by searching the correlation peak. Simulations are performed to investigate the robustness of the proposed method, particularly in relation to its sensitivity to background noise, the scale of real-time images, and the travel direction of the vehicle. At an image resolution of 1 m2/pixel, the accuracy of localization is more than 10 meters.
文摘船位推算是水下航行器自主导航定位的重要手段。当采用对流工作模式的多普勒计程仪进行船位推算时,测速精度受海流影响较大,由此引起的船位推算误差较大。针对此问题,提出一种基于机动目标"当前"统计模型的水下组合导航模式,通过增加加速度观测信息,采用加速度均值、方差自适应Kalman滤波算法实现线运动参数的估计和流速修正并进行了仿真实验验证。仿真结果表明,使用本方法能得到较为准确的流速估计值,相同条件下使用加速度信息辅助船位推算比纯船位推算的定位精度有较大提高,其精度优于1 n mile/h。