In writings on relativity time, the various relations are only changed by the transverse shift. This paper proves that the axial Doppler shift does that as well and gives some impacts of that on common differential re...In writings on relativity time, the various relations are only changed by the transverse shift. This paper proves that the axial Doppler shift does that as well and gives some impacts of that on common differential relations in physics. When a modulated signal lasting a time = T is subjected to an optical Doppler shift K (either axial or transverse or both), where K is shifted frequency/original frequency, the Doppler shifted signal will last T/K. This because all shifted harmonics of its Fourier series (with a fundamental period of T) will last 1/K times the period of the original harmonic. The reader can graph any Fourier series and then graph its shifted series. The reader will see the shifted period is T/K. The Fourier series of the original repeats when time is greater than T and the shifted one when time is greater than T/K, which means the original series only represents the signal from time = 0 to T and the shifted series represents the shifted signal from time = 0 to T/K. Hence, the shifted one has all of the information in T/K as the original has in T. Therefore everything in the series including information is T/K long in the shifted series. Therefore, both the axial and the transverse Doppler shift change time periods in a vacuum, independent of material involved. That has not been obvious for over 100 years the axial shift changes time from the definition of frequency = 1/time.展开更多
The Doppler weather radar fault judging system and remote monitoring platform were introduced.Through the real-time scanning of radar alarm information coding,the platform can realize dynamic monitoring and real-time ...The Doppler weather radar fault judging system and remote monitoring platform were introduced.Through the real-time scanning of radar alarm information coding,the platform can realize dynamic monitoring and real-time alarm of Doppler radar equipment components,so as to improve the reliability of equipment operation,and truly realize"unattended"remote monitoring.展开更多
We present a new cosine chaotic mapping proved by chaos theory test and analysis such that the system has good cryptography properties, wide chaos range, simple structure, and good sensitivity to initial value, and th...We present a new cosine chaotic mapping proved by chaos theory test and analysis such that the system has good cryptography properties, wide chaos range, simple structure, and good sensitivity to initial value, and the mapping can meet the needs of chaotic image encryption. Based on the cosine chaotic system, we propose a new encryption method. First,according to the cyclic characteristics of the mapping, the cyclic information wave is simulated. Second, the quasi-Doppler effect is used to synchronously scramble and diffuse the image to obfuscate the original pixel. Finally, the XOR diffusion of image pixels is carried out by information wave to further enhance the encryption effect. Simulation experiment and security analysis show that the algorithm has good security, can resist the common attack mode, and has good efficiency.展开更多
文摘In writings on relativity time, the various relations are only changed by the transverse shift. This paper proves that the axial Doppler shift does that as well and gives some impacts of that on common differential relations in physics. When a modulated signal lasting a time = T is subjected to an optical Doppler shift K (either axial or transverse or both), where K is shifted frequency/original frequency, the Doppler shifted signal will last T/K. This because all shifted harmonics of its Fourier series (with a fundamental period of T) will last 1/K times the period of the original harmonic. The reader can graph any Fourier series and then graph its shifted series. The reader will see the shifted period is T/K. The Fourier series of the original repeats when time is greater than T and the shifted one when time is greater than T/K, which means the original series only represents the signal from time = 0 to T and the shifted series represents the shifted signal from time = 0 to T/K. Hence, the shifted one has all of the information in T/K as the original has in T. Therefore everything in the series including information is T/K long in the shifted series. Therefore, both the axial and the transverse Doppler shift change time periods in a vacuum, independent of material involved. That has not been obvious for over 100 years the axial shift changes time from the definition of frequency = 1/time.
文摘The Doppler weather radar fault judging system and remote monitoring platform were introduced.Through the real-time scanning of radar alarm information coding,the platform can realize dynamic monitoring and real-time alarm of Doppler radar equipment components,so as to improve the reliability of equipment operation,and truly realize"unattended"remote monitoring.
基金supported by the National Natural Science Foundation of China(Grant No.61672124)the Password Theory Project of the 13th Five-Year Plan National Cryptography Development Fund(Grant No.MMJJ20170203)+3 种基金the Liaoning Provincial Science and Technology Innovation Leading Talents Program(Grant No.XLYC1802013)the Key R&D Project of Liaoning Province(Grant No.2019020105-JH2/103)Jinan City‘20 Universities’Funding Projects Introducing Innovation Team Program(Grant No.2019GXRC031)Research Fund of Guangxi Key Lab of Multi-source Information Mining&Security(Grant No.MIMS20-M-02)。
文摘We present a new cosine chaotic mapping proved by chaos theory test and analysis such that the system has good cryptography properties, wide chaos range, simple structure, and good sensitivity to initial value, and the mapping can meet the needs of chaotic image encryption. Based on the cosine chaotic system, we propose a new encryption method. First,according to the cyclic characteristics of the mapping, the cyclic information wave is simulated. Second, the quasi-Doppler effect is used to synchronously scramble and diffuse the image to obfuscate the original pixel. Finally, the XOR diffusion of image pixels is carried out by information wave to further enhance the encryption effect. Simulation experiment and security analysis show that the algorithm has good security, can resist the common attack mode, and has good efficiency.