We derive an effective Hamiltonian for a spin-1/2 particle confined within a curved thin layer with non-uniform thickness using the confining potential approach.Our analysis reveals the presence of a pseudo-magnetic f...We derive an effective Hamiltonian for a spin-1/2 particle confined within a curved thin layer with non-uniform thickness using the confining potential approach.Our analysis reveals the presence of a pseudo-magnetic field and effective spin–orbit interaction(SOI)arising from the curvature,as well as an effective scalar potential resulting from variations in thickness.Importantly,we demonstrate that the physical effect of additional SOI from thickness fluctuations vanishes in low-dimensional systems,thus guaranteeing the robustness of spin interference measurements to thickness imperfection.Furthermore,we establish the applicability of the effective Hamiltonian in both symmetric and asymmetric confinement scenarios,which is crucial for its utilization in one-side etching systems.展开更多
A review of the art state was developed about the inflow relationships and their application for reservoir characterization. The theoretical development of the methodology for determining the damage effect using type-...A review of the art state was developed about the inflow relationships and their application for reservoir characterization. The theoretical development of the methodology for determining the damage effect using type-curves of the inflow relationships was shown. We show the process followed for achieve the geothermal type-curve affected with damage for reservoirs with mean salinities of 30000 ppm and temperatures up to 350℃. This type-curve was applied using measurement production data in a Mexican geothermal field. According with the obtained results is shown that the methodology for determining the damage effect using production measurements is a sure alternative for the damage effect calculation. It was used an alternative methodology in order to validate the damage presence and the obtained results were consistent. Last thing shows that both methodologies can be combined as a confident manner.展开更多
The curved surface (CS) effect on nanosilicon plays a main role in the activation for emission and photonic manipulation. The CS effect breaks the symmetrical shape of nanosilicon on which some bonds can produce loc...The curved surface (CS) effect on nanosilicon plays a main role in the activation for emission and photonic manipulation. The CS effect breaks the symmetrical shape of nanosilicon on which some bonds can produce localized electron states in the band gap. The investigation in calculation and experiment demonstrates that the different curvatures can form the characteristic electron states for some special bonding on the nanosilicon surface, which are related to a series of peaks in photoluminecience (PL), such as LN, LNO, Lo1, and Lo2 lines in PL spectra due to Si-N, Si-NO, Si=O, and Si-O-Si bonds on curved surface, respectively. Si-Yb bond on curved surface of Si nanostructures can provide the localized states in the band gap deeply and manipulate the emission wavelength into the window of optical communication by the CS effect, which is marked as the Lyb line of electroluminescence (EL) emission.展开更多
Precast reinforced concrete buildings have been well received in some seismic zones worldwide due to advantages such as the ease and the speed of implementation,and the possibility of working in inappropriate atmosphe...Precast reinforced concrete buildings have been well received in some seismic zones worldwide due to advantages such as the ease and the speed of implementation,and the possibility of working in inappropriate atmospheric conditions.In this research,seismic fragility curves were developed for precast concrete frames with a cast-in-situ concrete shear-wall,concerning the important issues of modeling the precast beam-column joints,construction quality,and soil type effects.For this purpose,the incremental dynamic analysis(IDA)was conducted for three-dimensional models of 3-,5-,and 8-story buildings under two record sets corresponding to soil types C and D of the NEHRP code.Beam-column joints were modeled using nonlinear rotational springs with rigid links with respect to the finite size of the joint panel.Results demonstrate that the Weibull distribution can be fitted to the damage state capacities better than the lognormal distribution at the intensities that are more than one standard deviation away from the median damage capacity.The seismic vulnerability of precast structures increases at all damage states as the height of the building increases.It is also observed that soil type has almost no considerable effect on the fragility curve parameters for all damage states considered herein.展开更多
Gravitational field produced by high-power laser is calculated according to the linearized Einstein field equation in weak field approximation. Gravitational Faraday effect of electromagnetic wave propagating in the a...Gravitational field produced by high-power laser is calculated according to the linearized Einstein field equation in weak field approximation. Gravitational Faraday effect of electromagnetic wave propagating in the above gravitational field is studied and the rotation angle of polarization plane of electromagnetic wave is derived. The result is discussed and estimated under the condition of present experiment facility.展开更多
Laser-induced breakdown spectroscopy(LIBS)has been used for soil analysis,but its measurement accuracy is often influenced by matrix effects of different kinds of soils.In this work,a method for matrix effect suppress...Laser-induced breakdown spectroscopy(LIBS)has been used for soil analysis,but its measurement accuracy is often influenced by matrix effects of different kinds of soils.In this work,a method for matrix effect suppressing was developed using laser-induced plasma acoustic signals to correct the original spectrum,thereby improving the analysis accuracy of the soil elements.A good linear relationship was investigated firstly between the original spectral intensity and the acoustic signals.The relative standard deviations(RSDs)of Mg,Ca,Sr,and Ba elements were then calculated for both the original spectrum and the spectrum with the acoustic correction,and the RSDs were significantly reduced with the acoustic correction.Finally,calibration curves of MgⅠ285.213 nm,CaⅠ422.673 nm,SrⅠ460.733 nm and BaⅡ455.403 nm were established to assess the analytical performance of the proposed acoustic correction method.The values of the determination coefficient(R~2)of the calibration curves for Mg,Ca,Sr,and Ba elements,corrected by the acoustic amplitude,are improved from 0.9845,0.9588,0.6165,and 0.6490 to 0.9876,0.9677,0.8768,and 0.8209,respectively.The values of R~2 of the calibration curves corrected by the acoustic energy are further improved to 0.9917,0.9827,0.8835,and 0.8694,respectively.These results suggest that the matrix effect of LIBS on soils can be clearly improved by using acoustic correction,and acoustic energy correction works more efficiently than acoustic amplitude correction.This work provides a simple and efficient method for correcting matrix effects in the element analysis of soils by acoustic signals.展开更多
The mechanism of ionization and fragmentation for terphenyl (diphenylbenzene) with three structural ring isomers (ortho-, meta- and para-), and stilbene (1,2-diphenylethylene) with two geometrical isomers (trans- and ...The mechanism of ionization and fragmentation for terphenyl (diphenylbenzene) with three structural ring isomers (ortho-, meta- and para-), and stilbene (1,2-diphenylethylene) with two geometrical isomers (trans- and cis-) by EI mass spectrometry and ionization efficiency curves are investigation.展开更多
The design of columns relies heavily on the basis of Leonhard Euler’s Theory of Elastic Buckling.However,to increase the accuracy in determining the maximum critical load a column can withstand before buckling,a cons...The design of columns relies heavily on the basis of Leonhard Euler’s Theory of Elastic Buckling.However,to increase the accuracy in determining the maximum critical load a column can withstand before buckling,a constant was introduced.This dimensionless coefficient is K,also known as the effective-length factor.This constant is often found in building design codes and varies in value depending on the type of column support that is applied.This paper presents experimental and analytical studies on the determination of the effective-length factor in the buckling stability of columns with partially-fixed support conditions.To this end,the accurate K value of the columns tested by the Instron Testing Machine(ITM)at California State University,Northridge’s(CSUN’s)Mechanics Laboratory is determined.The ITM is used in studying the buckling of columns where the supports are neither pinned nor fixed,and the material cross-section rather rests upon the machine while loading is applied axially.Several column specimens were tested and the experimental data were analyzed in order to estimation of the accurate effective-length factor.The calculations from the tested results as well as the conducted probabilistic analysis shed light on how a fragility curve may aid in predicting the effective-length value of future tests.展开更多
基金This work was supported in part by the National Natural Science Foundation of China(Grant No.12104239)National Natural Science Foundation of Jiangsu Province of China(Grant No.BK20210581)+2 种基金Nanjing University of Posts and Telecommunications Science Foundation(Grant Nos.NY221024 and NY221100)the Science and Technology Program of Guangxi,China(Grant No.2018AD19310)the Jiangxi Provincial Natural Science Foundation(Grant No.20224BAB211020).
文摘We derive an effective Hamiltonian for a spin-1/2 particle confined within a curved thin layer with non-uniform thickness using the confining potential approach.Our analysis reveals the presence of a pseudo-magnetic field and effective spin–orbit interaction(SOI)arising from the curvature,as well as an effective scalar potential resulting from variations in thickness.Importantly,we demonstrate that the physical effect of additional SOI from thickness fluctuations vanishes in low-dimensional systems,thus guaranteeing the robustness of spin interference measurements to thickness imperfection.Furthermore,we establish the applicability of the effective Hamiltonian in both symmetric and asymmetric confinement scenarios,which is crucial for its utilization in one-side etching systems.
文摘A review of the art state was developed about the inflow relationships and their application for reservoir characterization. The theoretical development of the methodology for determining the damage effect using type-curves of the inflow relationships was shown. We show the process followed for achieve the geothermal type-curve affected with damage for reservoirs with mean salinities of 30000 ppm and temperatures up to 350℃. This type-curve was applied using measurement production data in a Mexican geothermal field. According with the obtained results is shown that the methodology for determining the damage effect using production measurements is a sure alternative for the damage effect calculation. It was used an alternative methodology in order to validate the damage presence and the obtained results were consistent. Last thing shows that both methodologies can be combined as a confident manner.
基金Project supported by the National Natural Science Foundation of China(Grant No.11264007)
文摘The curved surface (CS) effect on nanosilicon plays a main role in the activation for emission and photonic manipulation. The CS effect breaks the symmetrical shape of nanosilicon on which some bonds can produce localized electron states in the band gap. The investigation in calculation and experiment demonstrates that the different curvatures can form the characteristic electron states for some special bonding on the nanosilicon surface, which are related to a series of peaks in photoluminecience (PL), such as LN, LNO, Lo1, and Lo2 lines in PL spectra due to Si-N, Si-NO, Si=O, and Si-O-Si bonds on curved surface, respectively. Si-Yb bond on curved surface of Si nanostructures can provide the localized states in the band gap deeply and manipulate the emission wavelength into the window of optical communication by the CS effect, which is marked as the Lyb line of electroluminescence (EL) emission.
文摘Precast reinforced concrete buildings have been well received in some seismic zones worldwide due to advantages such as the ease and the speed of implementation,and the possibility of working in inappropriate atmospheric conditions.In this research,seismic fragility curves were developed for precast concrete frames with a cast-in-situ concrete shear-wall,concerning the important issues of modeling the precast beam-column joints,construction quality,and soil type effects.For this purpose,the incremental dynamic analysis(IDA)was conducted for three-dimensional models of 3-,5-,and 8-story buildings under two record sets corresponding to soil types C and D of the NEHRP code.Beam-column joints were modeled using nonlinear rotational springs with rigid links with respect to the finite size of the joint panel.Results demonstrate that the Weibull distribution can be fitted to the damage state capacities better than the lognormal distribution at the intensities that are more than one standard deviation away from the median damage capacity.The seismic vulnerability of precast structures increases at all damage states as the height of the building increases.It is also observed that soil type has almost no considerable effect on the fragility curve parameters for all damage states considered herein.
文摘Gravitational field produced by high-power laser is calculated according to the linearized Einstein field equation in weak field approximation. Gravitational Faraday effect of electromagnetic wave propagating in the above gravitational field is studied and the rotation angle of polarization plane of electromagnetic wave is derived. The result is discussed and estimated under the condition of present experiment facility.
基金financially supported by National Natural Science Foundation of China(No.12064029)by Jiangxi Provincial Natural Science Foundation(No.20202BABL202024)by the Open project program of Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province(No.ED202208094)。
文摘Laser-induced breakdown spectroscopy(LIBS)has been used for soil analysis,but its measurement accuracy is often influenced by matrix effects of different kinds of soils.In this work,a method for matrix effect suppressing was developed using laser-induced plasma acoustic signals to correct the original spectrum,thereby improving the analysis accuracy of the soil elements.A good linear relationship was investigated firstly between the original spectral intensity and the acoustic signals.The relative standard deviations(RSDs)of Mg,Ca,Sr,and Ba elements were then calculated for both the original spectrum and the spectrum with the acoustic correction,and the RSDs were significantly reduced with the acoustic correction.Finally,calibration curves of MgⅠ285.213 nm,CaⅠ422.673 nm,SrⅠ460.733 nm and BaⅡ455.403 nm were established to assess the analytical performance of the proposed acoustic correction method.The values of the determination coefficient(R~2)of the calibration curves for Mg,Ca,Sr,and Ba elements,corrected by the acoustic amplitude,are improved from 0.9845,0.9588,0.6165,and 0.6490 to 0.9876,0.9677,0.8768,and 0.8209,respectively.The values of R~2 of the calibration curves corrected by the acoustic energy are further improved to 0.9917,0.9827,0.8835,and 0.8694,respectively.These results suggest that the matrix effect of LIBS on soils can be clearly improved by using acoustic correction,and acoustic energy correction works more efficiently than acoustic amplitude correction.This work provides a simple and efficient method for correcting matrix effects in the element analysis of soils by acoustic signals.
文摘The mechanism of ionization and fragmentation for terphenyl (diphenylbenzene) with three structural ring isomers (ortho-, meta- and para-), and stilbene (1,2-diphenylethylene) with two geometrical isomers (trans- and cis-) by EI mass spectrometry and ionization efficiency curves are investigation.
基金The authors would like to express their great appreciation for funding made possible in support of this research endeavor through the CSU-LSAMP(California State University Louis Stokes Alliance for Minority Participation)program via the NSF(National Science Foundation)grant#HRD-1302873the Chancellor’s Office of the California State University。
文摘The design of columns relies heavily on the basis of Leonhard Euler’s Theory of Elastic Buckling.However,to increase the accuracy in determining the maximum critical load a column can withstand before buckling,a constant was introduced.This dimensionless coefficient is K,also known as the effective-length factor.This constant is often found in building design codes and varies in value depending on the type of column support that is applied.This paper presents experimental and analytical studies on the determination of the effective-length factor in the buckling stability of columns with partially-fixed support conditions.To this end,the accurate K value of the columns tested by the Instron Testing Machine(ITM)at California State University,Northridge’s(CSUN’s)Mechanics Laboratory is determined.The ITM is used in studying the buckling of columns where the supports are neither pinned nor fixed,and the material cross-section rather rests upon the machine while loading is applied axially.Several column specimens were tested and the experimental data were analyzed in order to estimation of the accurate effective-length factor.The calculations from the tested results as well as the conducted probabilistic analysis shed light on how a fragility curve may aid in predicting the effective-length value of future tests.
文摘目的探讨肾小管及肾小球相关标志物在2型糖尿病(type 2 diabetes mellitus,T2DM)患者不同肾损伤阶段的诊断价值。方法选取于2018年4月1日至2019年10月31日入住首都医科大学附属北京同仁医院内分泌科的T2DM患者272例,完善临床生化指标及尿蛋白四项:尿微量白蛋白/肌酐(urinary albumin to creatinine ratio,ACR)、α1-微球蛋白/肌酐(urinary α1-microglobulin to creatinine ratio,UA1CR)、免疫球蛋白G/肌酐(urinary immunoglobulin G to creatinine ratio,UIGG)、转铁蛋白/肌酐(urinary transferrin to creatinine ratio,UTRF);进行眼底照相、核医学99mTc-EC检测肾有效血浆流量(effective renal plasma flow,ERPF)和99mTc-DTPA检测肾小球滤过率(glomerular filtration rate,GFR)。根据ACR和眼底检查结果分为4组:正常蛋白尿无糖尿病视网膜病变(diabetic retinopathy,DR)132例,即对照组(ACR≤30 mg/g);正常蛋白尿合并DR 32例,为糖尿病肾病(diabetic kidney disease,DKD)前期组;微量蛋白尿组78例(30<ACR≤300 mg/g)和大量蛋白尿组30例(ACR>300 mg/g)。比较四组间尿蛋白四项和ERPF、GFR的水平,通过受试者工作特征(receiver operating characteristic,ROC)曲线评价上述各指标在不同肾损伤阶段的诊断价值。结果尿蛋白四项和ERPF、GFR的水平在不同组间差异有统计学意义(P<0.05)。在尿蛋白正常组中,DR组中肾小管功能标志物UA1CR较对照组明显升高(P<0.01);肾小球功能标志物ACR、UTRF和GFR在两组间差异无统计学意义(P>0.05),DR组UIGG较对照组升高(P<0.01)。在微量蛋白尿组和大量蛋白尿组,尿蛋白四项随肾损伤程度增加而增加,而ERPF和GFR随肾损伤程度增加而降低。ROC曲线分析显示,在尿蛋白排出正常的T2DM患者中合并DR组中肾小管功能标志物UA1CR和ERPF的曲线下面积(area under the curve,AUC)分别为68.2%(P<0.01)和60.5%(P<0.05),而肾小球功能标志物ACR和GFR的AUC均小于60%,差异无统计学意义(P>0.05)。尿蛋白四项及GFR在微量和大量蛋白尿组的AUC均大于60%(P<0.05),ERPF在大量蛋白尿组AUC为67.2%(P<0.05)。结论T2DM极早期微血管改变即ACR正常仅有DR时,肾小管标志物UA1CR先于肾小球标志物ACR和GFR发生变化。肾损伤早期,肾小管标志物诊断效能优于肾小球;肾损伤后期,肾小球标志物诊断效能优于肾小管。提示DKD肾小管功能的改变可能早于肾小球。