期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Singular Integrals with Bilinear Phases
1
作者 Elena PRESTINI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第1期251-260,共10页
We prove the boundedness from Lp(T2) to itself, 1 〈 p 〈∞, of highly oscillatory singular integrals Sf(x, y) presenting singularities of the kind of the double Hilbert transform on a non-rectangular domain of in... We prove the boundedness from Lp(T2) to itself, 1 〈 p 〈∞, of highly oscillatory singular integrals Sf(x, y) presenting singularities of the kind of the double Hilbert transform on a non-rectangular domain of integration, roughly speaking, defined by |y′| 〉 |x′|, and presenting phases λ(Ax + By) with 0≤ A, B ≤ 1 and λ≥ 0. The norms of these oscillatory singular integrals are proved to be independent of all parameters A1 B and A involved. Our method extends to a more general family of phases. These results are relevant to problems of almost everywhere convergence of double Fourier and Walsh series. 展开更多
关键词 Hardy-Littlewood maximal function Maximal Hilbert transform Maximal Carleson operator Oscillatory singular integrals a.e. convergence of double Fourier series
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部