期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Transient electro-osmotic and pressure driven flows of two-layer fluids through a slit microchannel 被引量:4
1
作者 Jie Su Yong-Jun Jian +1 位作者 Long Chang Quan-Sheng Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第4期534-542,共9页
By method of the Laplace transform, this arti- cle presents semi-analytical solutions for transient electro- osmotic and pressure-driven flows (EOF/PDF) of two-layer fluids between microparallel plates. The lineariz... By method of the Laplace transform, this arti- cle presents semi-analytical solutions for transient electro- osmotic and pressure-driven flows (EOF/PDF) of two-layer fluids between microparallel plates. The linearized Poisson- Boltzmann equation and the Cauchy momentum equation have been solved in this article. At the interface, the Maxwell stress is included as the boundary condition. By numerical computations of the inverse Laplace transform, the effects of dielectric constant ratio e, density ratio p, pressure ratio p, viscosity ratioμ of layer II to layer I, interface zeta potential difference △ψ, interface charge density jump Q, the ratios of maximum electro-osmotic velocity to pressure velocity , and the normalized pressure gradient B on transient veloc- ity amplitude are presented.We find the velocity amplitude becomes large with the interface zeta potential difference and becomes small with the increase of the viscosity. The ve- locity will be large with the increases of dielectric constant ratio; the density ratio almost does not influence the EOF ve- locity. Larger interface charge density jump leads to a strong jump of velocity at the interface. Additionally, the effects of the thickness of fluid layers (hi and h2) and pressure gradient on the velocity are also investigated. 展开更多
关键词 Hydromechanics ~ Micro-parallel plates ~ Elec-tric double layer (EDL) ~ Unsteady EOF/pdf ~ Two-layerNewtonian fluids
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部