The double ionization process of molecules driven by co-rotating two-color circularly polarized fields is investigated with a three-dimensional classical ensemble model. Numerical results indicate that a considerable ...The double ionization process of molecules driven by co-rotating two-color circularly polarized fields is investigated with a three-dimensional classical ensemble model. Numerical results indicate that a considerable part of the sequential double ionization(DI) events of molecules occur through internal collision double ionization(ICD), and the ICD recollision mechanism is significantly different from that in non-sequential double ionization(NSDI). By analyzing the results of internuclear distances R = 5 a.u. and 2 a.u., these two recollision mechanisms are studied in depth. It is found that the dynamic behaviors of the recollision mechanisms of NSDI and ICD are similar. For NSDI, the motion range of electrons after the ionization is relatively large, and the electrons will return to the core after a period of time. In the ICD process,electrons will rotate around the parent ion before ionization, and the distance of the electron motion is relatively small. After a period of time, the electrons will come back to the core and collide with another electron. Furthermore, the molecular internuclear distance has a significant effect on the electron dynamic behavior of the two ionization mechanisms. This study will help to understand the multi-electron ionization process of complex systems.展开更多
Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)la...Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)laser field is theoretically studied.And the dynamics in two typical collision pathways,recollision-impact-ionization(RII)and recollisionexcitation with subsequent ionization(RESI),is systematically explored.Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero,and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron.As the relative amplitude increases,the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum,indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes.Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron–electron collisions and energy exchange efficiency in the NSDI process.展开更多
Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, w...Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, we study the process of NSDI of argon atoms driven by a few-cycle orthogonal two-color laser field composed of 800 nm and 400 nm laser pulses. By changing the relative phase of the two laser pulses, a localized enhancement of NSDI yield is observed at 0.5πand 1.5π, which could be attributed to a rapid and substantial increase in the number of electrons returning to the parent ion within extremely short time intervals at these specific phases. Through the analysis of the electron–electron momentum correlations within different time windows of NSDI events and the angular distributions of emitted electrons in different channels, we observe a more pronounced electron–electron correlation phenomenon in the recollision-induced ionization(RII) channel. This is attributed to the shorter delay time in the RII channel.展开更多
We study the double ionization dynamics of a helium atom impacted by electrons with full-dimensional classical trajectory Monte Carlo simulation. The excess energy is chosen to cover a wide range of values from 5 e V ...We study the double ionization dynamics of a helium atom impacted by electrons with full-dimensional classical trajectory Monte Carlo simulation. The excess energy is chosen to cover a wide range of values from 5 e V to 1 ke V for comparative study. At the lowest excess energy, i.e., close to the double-ionization threshold, it is found that the projectile momentum is totally transferred to the recoil-ion while the residual energy is randomly partitioned among the three outgoing electrons, which are then most probably emitted with an equilateral triangle configuration. Our results agree well with experiments as compared with early quantum-mechanical calculation as well as classical simulation based on a two-dimensional Bohr's model. Furthermore, by mapping the final momentum vectors event by event into a Dalitz plot,we unambiguously demonstrate that the ergodicity has been reached and thus confirm a long-term scenario conceived by Wannier. The time scale for such few-body thermalization, from the initial nonequilibrium state to the final microcanonical distribution, is only about 100 attoseconds. Finally, we predict that, with the increase of the excess energy, the dominant emission configuration undergoes a transition from equilateral triangle to T-shape and finally to a co-linear mode. The associated signatures of such configuration transition in the electron–ion joint momentum spectrum and triple-electron angular distribution are also demonstrated.展开更多
The two-photon double ionization(TPDI) dynamics of helium by chirped attosecond pulses are theoretically studied by solving the two-electron time-dependent Schr o¨dinger equation in its full dimensions. We show...The two-photon double ionization(TPDI) dynamics of helium by chirped attosecond pulses are theoretically studied by solving the two-electron time-dependent Schr o¨dinger equation in its full dimensions. We show that both the differential and the total double ionization probability can be significantly controlled by adjusting the chirp. The dependence of the TPDI on the chirp can be quite different for different photon energies, relying on the central photon energy being in the sequential region, nonsequential region, or translation region. The physics which lead to the chirp dependence for different photon energies are addressed. Present findings are well reproduced by a model based on the second-order time-dependent perturbation theory.展开更多
Nonsequential double ionization (NSDI) processes of nonaligned diatomic molecules N2 and O2 are studied using the S-matrix theory. Our results show that the NSDI process significantly depends on the molecular symmet...Nonsequential double ionization (NSDI) processes of nonaligned diatomic molecules N2 and O2 are studied using the S-matrix theory. Our results show that the NSDI process significantly depends on the molecular symmetry and structure. The ratio of NSDI rate to single ionization rate as a function of the field intensity is obtained. It is found that N2 behaves closely with its companion atom Ar in the ratios over the entire intensity range, while O2 exhibits an obvious suppression effect, which is qualitatively consistent with the experiment.展开更多
We report our numerical simulation on the dynamic interference photoelectron spectra for a one-dimensional (1D) He model exposed to intense ultrashort extreme ultraviolet (XUV) laser pulses. The results demonstrat...We report our numerical simulation on the dynamic interference photoelectron spectra for a one-dimensional (1D) He model exposed to intense ultrashort extreme ultraviolet (XUV) laser pulses. The results demonstrate an unambiguous interference feature in the photoelectron spectra, and the interference is unveiled to originate from the dynamic Stark effect. The interference photoelectron spectra are prompted for intense sub-femtosecond XUV laser pulses in double ionization. The stationary phase picture is corroborated qualitatively in the two-electron system. The ability of probing the dynamic Stark effect by the photoelectron spectra in a pragmatic experiment of single-photon double ionization of He may shed light on further investigation on multi-electron atoms and molecules.展开更多
Using a classical ensemble model, we investigate the correlation behaviour of electrons originating from nonsequential double ionization (NSDI) of argon atoms by the elliptically polarized laser pulses. Because of t...Using a classical ensemble model, we investigate the correlation behaviour of electrons originating from nonsequential double ionization (NSDI) of argon atoms by the elliptically polarized laser pulses. Because of the ellipticity, not only the first electron to return but also the later return of tunneled electrons contribute significantly to NSDI. We mainly discuss two kinds of events of NSDI originating from the first and the second return separately. For the NSDI resulting from the recollision of the first return, the correlated electron momentum spectrum along the long axis of the laser polarization plane reveals an obvious V-like shape, located at the first and third quadrant. However, for the NSDI resulting from the recollision of the second return, the momenta of two electrons are distributed in the four quadrants uniformly. By analysing the trajectories of these two kinds, we find that the recollision energy and the laser phase at recollision are different for the first and second returning trajectories, which are responsible for the difference in the correlated behavior of the final electron momentum.展开更多
Using the classical ensemble model, we investigate the nonsequential double ionization(NSDI) of Ar and Mg in the two-color elliptically polarized laser pulse for different elliptical polarizations. Numerical results...Using the classical ensemble model, we investigate the nonsequential double ionization(NSDI) of Ar and Mg in the two-color elliptically polarized laser pulse for different elliptical polarizations. Numerical results show that for Ar atoms the NSDI yield increases as the ellipticity increases, which is different from the case of Mg atoms. Moreover, the correlated behavior in the correlated electron momentum along the x direction and ion momentum distributions of Ar atoms are influenced by the ellipticity. By statistical analysis of different times, we can conclude that the ellipticity may be responsible for the NSDI processes. The correlated momenta distributions along the x direction at the recollision time are demonstrated and the results show that the travelling time and ellipticity can affect the emitted directions of both electrons.展开更多
We experimentally investigate the double ionization pulses. The total kinetic energy release of the two of molecular hydrogen subjected to ultrashort intense laser coincident H+ ions, which provides a diagnosis of di...We experimentally investigate the double ionization pulses. The total kinetic energy release of the two of molecular hydrogen subjected to ultrashort intense laser coincident H+ ions, which provides a diagnosis of different processes to double ionization of H2, is measured for two different pulse durations, i.e., 25 and 5 fs, and various laser intensities. It is found that, for the long pulse duration (i.e., 25 fs), the double ionization occurs mainly via two processes, i.e., the charge resonance enhanced ionization and recollision-induced double ionization. Moreover, the contributions from these two processes can be significantly modulated by changing the laser intensity. In contrast, for a few-cycle pulse of 5 fs, only the recollsion-induced double ionization survives, and in particular, this process could be solely induced by the first-return reeollision at appropriate laser intensities, providing an efficient way to probe the sub-laser-cycle molecular dynamics.展开更多
The microscopic recollision dynamics in strong-field nonsequential double ionization of Ar atoms is in- vestigated using three-dimensional classical ensembles. By adjusting the nuclear Coulomb potential, we can excell...The microscopic recollision dynamics in strong-field nonsequential double ionization of Ar atoms is in- vestigated using three-dimensional classical ensembles. By adjusting the nuclear Coulomb potential, we can excellently reproduce the experimental results both within the laser intensity regimes well above the reeollision threshold and well below the recollision threshold quantitatively. More importantly, our trajectory analysis clearly reveals the particular electronic dynamics in recollision process: the momentum of the recolliding electron encounters a sudden change both in magnitude and in direction when it approaches the nucleus closely, which show that the nuclear Coulomb attraction plays a key role in the recollision process of nonsequential double ionization of Ar atoms.展开更多
In strong-field double ionization,two electrons are ionized by intense laser field.These two electrons move in the laser field and the state is described by a Coulomb-Volkov state,where the repulsive Coulomb state des...In strong-field double ionization,two electrons are ionized by intense laser field.These two electrons move in the laser field and the state is described by a Coulomb-Volkov state,where the repulsive Coulomb state describes the relative motion of the two electrons and the Volkov state describes the center-of-mass motion of the two electrons in the laser field.In the frame of scattering theory,we derive a simple analytical formula of the double ionization of He-like atoms.The effect of the Coulomb force between two electrons on the double ionization process is discussed.Numerical studies disclose that the Coulomb force enhances the ionization rate of high-energy electrons but suppresses the ionization rate of the lowest-energy electrons.展开更多
Recently,the quantitative rescattering model(QRS)for nonsequential double ionization(NSDI)is modified by taking into account the potential change(PC)due to the presence of electric field at the time of recollision.Usi...Recently,the quantitative rescattering model(QRS)for nonsequential double ionization(NSDI)is modified by taking into account the potential change(PC)due to the presence of electric field at the time of recollision.Using the improved QRS model,we simulate the longitudinal momentum distributions of doubly charged ions He2+by projecting the correlated two-electron momentum distributions for NSDI of He onto the main diagonal.The obtained results are compared directly with the experimental data at different intensities.It is found that when the PC is considered,the width of momentum distributions reduces and the agreement between theory and experiment is improved.展开更多
The effect of initial longitudinal velocity of the tunnelled electron on the non-sequential double ionization (NSDI) process in an elliptically polarized laser field is studied by a semiclassical model. We find that...The effect of initial longitudinal velocity of the tunnelled electron on the non-sequential double ionization (NSDI) process in an elliptically polarized laser field is studied by a semiclassical model. We find that the non-zero initial longitudinal velocity has a suppressing effect on single-return collision (SRC) events in the double ionization process, more specifically, it results in an obvious reduction in the center part of the correlation momentum distributions in the direction of the major polarization axis (z axis) and makes the distribution of single-return collision in the minor polarization axis (x axis) become narrower.展开更多
We investigated the nonsequential double ionization(NSDI)in Ar by two-color elliptically polarized laser field with a three-dimensional(3D)classical ensemble method.We study the relative phase effect of NSDI and disti...We investigated the nonsequential double ionization(NSDI)in Ar by two-color elliptically polarized laser field with a three-dimensional(3D)classical ensemble method.We study the relative phase effect of NSDI and distinguish two particular recollision channels in NSDI,which are recollision–impact ionization(RII)and recollision-induced excitation with subsequent ionization(RESI),according to the delay-time between the recollision and the final double ionization.The numerical results indicate that the ion momentum distribution is changed and the triangle structure is more obvious with the decrease of the relative phase.We also demonstrate that the RESI process always dominates in the whole double ionization process and the ratio of RESI and RII channels can be influenced by the relative phase.展开更多
This paper studies the nonsequential double ionization (NSDI) process of diatomic molecules aligned parallel and perpendicular to an intense linearly polarized laser field by using a three-dimensional semiclassical ...This paper studies the nonsequential double ionization (NSDI) process of diatomic molecules aligned parallel and perpendicular to an intense linearly polarized laser field by using a three-dimensional semiclassical model. With this model, it achieves insight into the ion momentum distribution under the combined influence of a two-centre Coulomb potential and an intense laser field, and this result shows the significant influence of molecular alignment on the ratio between double and single ionization rate. Careful investigations show that the NSDI process for different alignment molecules has a close relation to the laser intensity and the different bounding electron distribution has a significant influence on the final ion momentum distribution.展开更多
We review the recently improved quantitative rescattering theory for nonsequential double ionization, in which the lowering of threshold due to the presence of electric field at the time of recollision has been taken ...We review the recently improved quantitative rescattering theory for nonsequential double ionization, in which the lowering of threshold due to the presence of electric field at the time of recollision has been taken into account. First,we present the basic theoretical tools which are used in the numerical simulations, especially the quantum theories for elastic scattering of electron as well as the processes of electron impact excitation and electron impact ionization. Then,after a brief discussion about the properties of the returning electron wave packet, we provide the numerical procedures for the simulations of the total double ionization yield, the double-to-single ionization ratio, and the correlated two-electron momentum distribution.展开更多
This paper uses the classical ensemble method to study the double ionization of a 2-dimensional (2D) model helium atom interacting with an elliptically polarized laser pulse. The classical ensemble calculation demon...This paper uses the classical ensemble method to study the double ionization of a 2-dimensional (2D) model helium atom interacting with an elliptically polarized laser pulse. The classical ensemble calculation demonstrates that the ratio of double to single ionization decreases with the increasing ellipticity of the driving field. The classical scenario shows that there are hardly any e--e recollisions with the circularly polarized laser pulse. The double ionization probability is studied for linearly and circularly polarized laser pulses. The classical numerical results are consistent with the semiclassical rescattering mechanism and in agreement with the experimental results and the quantum calculations qualitatively.展开更多
Using the classical ensemble method, we investigate nonsequential double ionization (NSDI) of diatomic molecules by elliptically polarized laser pulses. The results show that the ellipticity of the laser field has a...Using the classical ensemble method, we investigate nonsequential double ionization (NSDI) of diatomic molecules by elliptically polarized laser pulses. The results show that the ellipticity of the laser field has a strong suppression effect on NSDI probabilities both in parallel and perpendicular alignments. The double ionization (DI) channel is commonly dominated by NSDI, and the NSDI channel changes with ellipticity. As ellipticity increases, more and more NSDIs occur through recollision excitation with subsequent field ionization (RESI). Moreover, like the case of linear polarization, the two electrons involved in NSDI for perpendicularly aligned molecules are more likely to emit into the opposite hemispheres as compared to the case of parallel alignment. Additionally, this alignment effect increases as ellipticity increases.展开更多
We study the double ionization process of atoms in intense laser fields. The momentum distributions of the correlated electrons are calculated. Contrary to the general expectation, we show an increasing proportion of ...We study the double ionization process of atoms in intense laser fields. The momentum distributions of the correlated electrons are calculated. Contrary to the general expectation, we show an increasing proportion of the electrons ionized via excitation with the increasing laser intensity. These electrons generally have small energy thus they concentratedly distribute on the central region of the momentum diagram. Consequently, the central part of the momentum diagram becomes more notable in higher intensity laser fields. Further study suggests that this phenomenon is general in double ionization.展开更多
基金the National Key Research and Development Program of China (Grant No.2019YFA0307700)the National Natural Science Foundation of China (Grant Nos.12074145 and 11975012)+1 种基金Jilin Provincial Research Foundation for Basic Research,China (Grant No.20220101003JC)Jilin Provincial Education Department (Grant No.JJKH20230284KJ)。
文摘The double ionization process of molecules driven by co-rotating two-color circularly polarized fields is investigated with a three-dimensional classical ensemble model. Numerical results indicate that a considerable part of the sequential double ionization(DI) events of molecules occur through internal collision double ionization(ICD), and the ICD recollision mechanism is significantly different from that in non-sequential double ionization(NSDI). By analyzing the results of internuclear distances R = 5 a.u. and 2 a.u., these two recollision mechanisms are studied in depth. It is found that the dynamic behaviors of the recollision mechanisms of NSDI and ICD are similar. For NSDI, the motion range of electrons after the ionization is relatively large, and the electrons will return to the core after a period of time. In the ICD process,electrons will rotate around the parent ion before ionization, and the distance of the electron motion is relatively small. After a period of time, the electrons will come back to the core and collide with another electron. Furthermore, the molecular internuclear distance has a significant effect on the electron dynamic behavior of the two ionization mechanisms. This study will help to understand the multi-electron ionization process of complex systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12204132 and 12304376)Excellent Youth Science Foundation of Shandong Province (Overseas) (Grant No.2022HWYQ-073)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.HIT.OCEF.2022042)Natural Science Foundation of Shandong Province (Grant No.ZR2023QA075)。
文摘Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)laser field is theoretically studied.And the dynamics in two typical collision pathways,recollision-impact-ionization(RII)and recollisionexcitation with subsequent ionization(RESI),is systematically explored.Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero,and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron.As the relative amplitude increases,the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum,indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes.Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron–electron collisions and energy exchange efficiency in the NSDI process.
基金partly supported by the National Natural Science Foundation of China (Grant Nos. 12034008,12250003, and 11727810)the Program of Introducing Talents of Discipline to Universities 111 Project (B12024)。
文摘Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, we study the process of NSDI of argon atoms driven by a few-cycle orthogonal two-color laser field composed of 800 nm and 400 nm laser pulses. By changing the relative phase of the two laser pulses, a localized enhancement of NSDI yield is observed at 0.5πand 1.5π, which could be attributed to a rapid and substantial increase in the number of electrons returning to the parent ion within extremely short time intervals at these specific phases. Through the analysis of the electron–electron momentum correlations within different time windows of NSDI events and the angular distributions of emitted electrons in different channels, we observe a more pronounced electron–electron correlation phenomenon in the recollision-induced ionization(RII) channel. This is attributed to the shorter delay time in the RII channel.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12174034, 12047510, and 11822401)NSAF (Grant Nos. U1930402 and U1930403)。
文摘We study the double ionization dynamics of a helium atom impacted by electrons with full-dimensional classical trajectory Monte Carlo simulation. The excess energy is chosen to cover a wide range of values from 5 e V to 1 ke V for comparative study. At the lowest excess energy, i.e., close to the double-ionization threshold, it is found that the projectile momentum is totally transferred to the recoil-ion while the residual energy is randomly partitioned among the three outgoing electrons, which are then most probably emitted with an equilateral triangle configuration. Our results agree well with experiments as compared with early quantum-mechanical calculation as well as classical simulation based on a two-dimensional Bohr's model. Furthermore, by mapping the final momentum vectors event by event into a Dalitz plot,we unambiguously demonstrate that the ergodicity has been reached and thus confirm a long-term scenario conceived by Wannier. The time scale for such few-body thermalization, from the initial nonequilibrium state to the final microcanonical distribution, is only about 100 attoseconds. Finally, we predict that, with the increase of the excess energy, the dominant emission configuration undergoes a transition from equilateral triangle to T-shape and finally to a co-linear mode. The associated signatures of such configuration transition in the electron–ion joint momentum spectrum and triple-electron angular distribution are also demonstrated.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11322437 and 11574010)the National Basic Research Project of China(Grant No.2013CB922402)
文摘The two-photon double ionization(TPDI) dynamics of helium by chirped attosecond pulses are theoretically studied by solving the two-electron time-dependent Schr o¨dinger equation in its full dimensions. We show that both the differential and the total double ionization probability can be significantly controlled by adjusting the chirp. The dependence of the TPDI on the chirp can be quite different for different photon energies, relying on the central photon energy being in the sequential region, nonsequential region, or translation region. The physics which lead to the chirp dependence for different photon energies are addressed. Present findings are well reproduced by a model based on the second-order time-dependent perturbation theory.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11074026, 11074155, and 11104225)the Program for New Century Excellent Talents in University of the Ministry of Education of China (Grant No. NCET-08-0883)the National Basic Research Program of China (Grant No. 2011CB808100)
文摘Nonsequential double ionization (NSDI) processes of nonaligned diatomic molecules N2 and O2 are studied using the S-matrix theory. Our results show that the NSDI process significantly depends on the molecular symmetry and structure. The ratio of NSDI rate to single ionization rate as a function of the field intensity is obtained. It is found that N2 behaves closely with its companion atom Ar in the ratios over the entire intensity range, while O2 exhibits an obvious suppression effect, which is qualitatively consistent with the experiment.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61178028,11674243 and 11674242the National Basic Research Program of China under Grant No 2015CB755403
文摘We report our numerical simulation on the dynamic interference photoelectron spectra for a one-dimensional (1D) He model exposed to intense ultrashort extreme ultraviolet (XUV) laser pulses. The results demonstrate an unambiguous interference feature in the photoelectron spectra, and the interference is unveiled to originate from the dynamic Stark effect. The interference photoelectron spectra are prompted for intense sub-femtosecond XUV laser pulses in double ionization. The stationary phase picture is corroborated qualitatively in the two-electron system. The ability of probing the dynamic Stark effect by the photoelectron spectra in a pragmatic experiment of single-photon double ionization of He may shed light on further investigation on multi-electron atoms and molecules.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11005088 and 11047145)the Project of Basic and Advanced Technology of Henan Province, China (Grant Nos. 102300410241 and 112300410021)the Scientific Research Foundation of Education Department of Henan Province,China (Grant No. 2011B140018)
文摘Using a classical ensemble model, we investigate the correlation behaviour of electrons originating from nonsequential double ionization (NSDI) of argon atoms by the elliptically polarized laser pulses. Because of the ellipticity, not only the first electron to return but also the later return of tunneled electrons contribute significantly to NSDI. We mainly discuss two kinds of events of NSDI originating from the first and the second return separately. For the NSDI resulting from the recollision of the first return, the correlated electron momentum spectrum along the long axis of the laser polarization plane reveals an obvious V-like shape, located at the first and third quadrant. However, for the NSDI resulting from the recollision of the second return, the momenta of two electrons are distributed in the four quadrants uniformly. By analysing the trajectories of these two kinds, we find that the recollision energy and the laser phase at recollision are different for the first and second returning trajectories, which are responsible for the difference in the correlated behavior of the final electron momentum.
基金Project supported by the National Natural Science Foundation of China(Grant No.61575077)the Natural Science Foundation of Jilin Province,China(Grant No.20180101225JC)
文摘Using the classical ensemble model, we investigate the nonsequential double ionization(NSDI) of Ar and Mg in the two-color elliptically polarized laser pulse for different elliptical polarizations. Numerical results show that for Ar atoms the NSDI yield increases as the ellipticity increases, which is different from the case of Mg atoms. Moreover, the correlated behavior in the correlated electron momentum along the x direction and ion momentum distributions of Ar atoms are influenced by the ellipticity. By statistical analysis of different times, we can conclude that the ellipticity may be responsible for the NSDI processes. The correlated momenta distributions along the x direction at the recollision time are demonstrated and the results show that the travelling time and ellipticity can affect the emitted directions of both electrons.
基金Supported by the National Basic Research Program of China under Grant No 2013CB922201the National Natural Science Foundation of China under Grant Nos 11304365,11374329 and 11334009
文摘We experimentally investigate the double ionization pulses. The total kinetic energy release of the two of molecular hydrogen subjected to ultrashort intense laser coincident H+ ions, which provides a diagnosis of different processes to double ionization of H2, is measured for two different pulse durations, i.e., 25 and 5 fs, and various laser intensities. It is found that, for the long pulse duration (i.e., 25 fs), the double ionization occurs mainly via two processes, i.e., the charge resonance enhanced ionization and recollision-induced double ionization. Moreover, the contributions from these two processes can be significantly modulated by changing the laser intensity. In contrast, for a few-cycle pulse of 5 fs, only the recollsion-induced double ionization survives, and in particular, this process could be solely induced by the first-return reeollision at appropriate laser intensities, providing an efficient way to probe the sub-laser-cycle molecular dynamics.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 11005088 and 11047145the Science & Technology Project of Henan Province in China under Grant Nos. 102300410241 and 112300410021the Scientific Research Foundation of Education Department of Henan Province in China under Grant Nos. 2009A140006 and 2011B140018
文摘The microscopic recollision dynamics in strong-field nonsequential double ionization of Ar atoms is in- vestigated using three-dimensional classical ensembles. By adjusting the nuclear Coulomb potential, we can excellently reproduce the experimental results both within the laser intensity regimes well above the reeollision threshold and well below the recollision threshold quantitatively. More importantly, our trajectory analysis clearly reveals the particular electronic dynamics in recollision process: the momentum of the recolliding electron encounters a sudden change both in magnitude and in direction when it approaches the nucleus closely, which show that the nuclear Coulomb attraction plays a key role in the recollision process of nonsequential double ionization of Ar atoms.
基金the National Natural Science Foundation of China(Grant Nos.11674231 and 12074261)the Shanghai Natural Science Foundation,China(Grant No.20ZR1441600).
文摘In strong-field double ionization,two electrons are ionized by intense laser field.These two electrons move in the laser field and the state is described by a Coulomb-Volkov state,where the repulsive Coulomb state describes the relative motion of the two electrons and the Volkov state describes the center-of-mass motion of the two electrons in the laser field.In the frame of scattering theory,we derive a simple analytical formula of the double ionization of He-like atoms.The effect of the Coulomb force between two electrons on the double ionization process is discussed.Numerical studies disclose that the Coulomb force enhances the ionization rate of high-energy electrons but suppresses the ionization rate of the lowest-energy electrons.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274219)the Science and Technology Planning Project of Guangdong Province of China(Grant No.180917124960522)the Program for Promotion of Science at Universities in Guangdong Province of China(Grant No.2018KTSCX062)。
文摘Recently,the quantitative rescattering model(QRS)for nonsequential double ionization(NSDI)is modified by taking into account the potential change(PC)due to the presence of electric field at the time of recollision.Using the improved QRS model,we simulate the longitudinal momentum distributions of doubly charged ions He2+by projecting the correlated two-electron momentum distributions for NSDI of He onto the main diagonal.The obtained results are compared directly with the experimental data at different intensities.It is found that when the PC is considered,the width of momentum distributions reduces and the agreement between theory and experiment is improved.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11074026 and 11074155)the Program for New Century Excellent Talents in University of the Ministry of Education of China (Grant No. NCET-08-0883)
文摘The effect of initial longitudinal velocity of the tunnelled electron on the non-sequential double ionization (NSDI) process in an elliptically polarized laser field is studied by a semiclassical model. We find that the non-zero initial longitudinal velocity has a suppressing effect on single-return collision (SRC) events in the double ionization process, more specifically, it results in an obvious reduction in the center part of the correlation momentum distributions in the direction of the major polarization axis (z axis) and makes the distribution of single-return collision in the minor polarization axis (x axis) become narrower.
基金Project supported by the National Natural Science Foundation of China(Grant No.61575077)the Natural Science Foundation of Jilin Province of China(Grant No.20180101225JC)
文摘We investigated the nonsequential double ionization(NSDI)in Ar by two-color elliptically polarized laser field with a three-dimensional(3D)classical ensemble method.We study the relative phase effect of NSDI and distinguish two particular recollision channels in NSDI,which are recollision–impact ionization(RII)and recollision-induced excitation with subsequent ionization(RESI),according to the delay-time between the recollision and the final double ionization.The numerical results indicate that the ion momentum distribution is changed and the triangle structure is more obvious with the decrease of the relative phase.We also demonstrate that the RESI process always dominates in the whole double ionization process and the ratio of RESI and RII channels can be influenced by the relative phase.
基金Project supported by the National Basic Research Program of China (Grant No. 2006CB806000)Natural Science Foundation of Hebei Province,China (Grant No. A2008000136)CAEP Foundation (Grant Nos. 2006z0202 and 2008B0102007)
文摘This paper studies the nonsequential double ionization (NSDI) process of diatomic molecules aligned parallel and perpendicular to an intense linearly polarized laser field by using a three-dimensional semiclassical model. With this model, it achieves insight into the ion momentum distribution under the combined influence of a two-centre Coulomb potential and an intense laser field, and this result shows the significant influence of molecular alignment on the ratio between double and single ionization rate. Careful investigations show that the NSDI process for different alignment molecules has a close relation to the laser intensity and the different bounding electron distribution has a significant influence on the final ion momentum distribution.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274219)the Science and Technology Planning Project of Guangdong Province of China(Grant No.180917124960522)the Program for Promotion of Science at Universities in Guangdong Province of China(Grant No.2018KTSCX062)
文摘We review the recently improved quantitative rescattering theory for nonsequential double ionization, in which the lowering of threshold due to the presence of electric field at the time of recollision has been taken into account. First,we present the basic theoretical tools which are used in the numerical simulations, especially the quantum theories for elastic scattering of electron as well as the processes of electron impact excitation and electron impact ionization. Then,after a brief discussion about the properties of the returning electron wave packet, we provide the numerical procedures for the simulations of the total double ionization yield, the double-to-single ionization ratio, and the correlated two-electron momentum distribution.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10974068 and 10574057)
文摘This paper uses the classical ensemble method to study the double ionization of a 2-dimensional (2D) model helium atom interacting with an elliptically polarized laser pulse. The classical ensemble calculation demonstrates that the ratio of double to single ionization decreases with the increasing ellipticity of the driving field. The classical scenario shows that there are hardly any e--e recollisions with the circularly polarized laser pulse. The double ionization probability is studied for linearly and circularly polarized laser pulses. The classical numerical results are consistent with the semiclassical rescattering mechanism and in agreement with the experimental results and the quantum calculations qualitatively.
基金Project supported by the Fund for Excellent Youths of Education Department of Hubei Province,China(Grant No.Q20133001)the Natural Science Foundation of Hubei Province,China(Grant No.2013CFB015)the Special Fund of Theoretical Physics,China(Grant No.11347189)
文摘Using the classical ensemble method, we investigate nonsequential double ionization (NSDI) of diatomic molecules by elliptically polarized laser pulses. The results show that the ellipticity of the laser field has a strong suppression effect on NSDI probabilities both in parallel and perpendicular alignments. The double ionization (DI) channel is commonly dominated by NSDI, and the NSDI channel changes with ellipticity. As ellipticity increases, more and more NSDIs occur through recollision excitation with subsequent field ionization (RESI). Moreover, like the case of linear polarization, the two electrons involved in NSDI for perpendicularly aligned molecules are more likely to emit into the opposite hemispheres as compared to the case of parallel alignment. Additionally, this alignment effect increases as ellipticity increases.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61475168,11674231,and 61575124)Natural Science Foundation of Shanghai,China(Grant No.15ZR1430600)Shanghai Gaofeng & Gaoyuan Project for University Academic Program Development,China
文摘We study the double ionization process of atoms in intense laser fields. The momentum distributions of the correlated electrons are calculated. Contrary to the general expectation, we show an increasing proportion of the electrons ionized via excitation with the increasing laser intensity. These electrons generally have small energy thus they concentratedly distribute on the central region of the momentum diagram. Consequently, the central part of the momentum diagram becomes more notable in higher intensity laser fields. Further study suggests that this phenomenon is general in double ionization.