The blind-hole method is the most widely used approach to experimentally determine the distribution of residual stress. This paper aims to improve test accuracy of welding residual stress and conducts an experimental ...The blind-hole method is the most widely used approach to experimentally determine the distribution of residual stress. This paper aims to improve test accuracy of welding residual stress and conducts an experimental study on the strain release factors involved when using the blind-hole method for Q235 and Q345, two steels commonly used in building structures. The ranges of strain release factors A and B in the elastic stage, the effects of strain release factors on residual stress calculated values, and the plastic corrected strain release factors are analyzed considering of the effect of plastic deformation around the blind hole on measurement accuracy. Finally, a simplified calculation formula to determine strain release factors is proposed for use with the blind-hole method. Results show that in the elastic stage, strain release factor A for Q235 and Q345 ranges from-0.399 to-0.525 and strain release factor B from-0.791 to-0.960. Changing the strain release factors A and B shows that calculated residual tensile stress varies in relation to a decrease in both factor values. However, there is a increase in calculated residual compressive stress with a decrease in the strain release factor A value, but there is an decrease with a decrease in strain release factor B value. Calculated residual stress applied to elastic strain release factors is compared with that applied to amended plastic strain release factors for Q235 steel. The maximum deviation between calculated residual stress and test stress is reduced from 21.1 to 1.0%,and for Q345 steel from 26.5 to 1.2%. It is thus evident that the plastic correction formula proposed in this paper can be used in calculations when conducting a residual stress test.展开更多
针对线性调频(LFM,Linear Frequency Modulation)信号盲处理结果的可靠性评估问题,提出了一种基于循环频率特征分析的处理算法.首先对观测信号进行调制方式识别及参数估计,并据此建立参考信号,后将观测信号与参考信号作相关运算.通过检...针对线性调频(LFM,Linear Frequency Modulation)信号盲处理结果的可靠性评估问题,提出了一种基于循环频率特征分析的处理算法.首先对观测信号进行调制方式识别及参数估计,并据此建立参考信号,后将观测信号与参考信号作相关运算.通过检测相关序列在零频率附近是否存在循环频率,实现对LFM信号盲处理结果的可靠性检验.文中对所提出检验算法的错误概率进行了理论推导,并以常用的离散多项式变换(DPT,Discrete Polynomial Transform)法为例进行了实证分析.仿真结果表明,相对于已有时域方法而言,本文算法无需估计信噪比,且在低信噪比条件下具有更好的统计性能.展开更多
基金supported by the National Natural Science Foundation of China (no. 51478120)
文摘The blind-hole method is the most widely used approach to experimentally determine the distribution of residual stress. This paper aims to improve test accuracy of welding residual stress and conducts an experimental study on the strain release factors involved when using the blind-hole method for Q235 and Q345, two steels commonly used in building structures. The ranges of strain release factors A and B in the elastic stage, the effects of strain release factors on residual stress calculated values, and the plastic corrected strain release factors are analyzed considering of the effect of plastic deformation around the blind hole on measurement accuracy. Finally, a simplified calculation formula to determine strain release factors is proposed for use with the blind-hole method. Results show that in the elastic stage, strain release factor A for Q235 and Q345 ranges from-0.399 to-0.525 and strain release factor B from-0.791 to-0.960. Changing the strain release factors A and B shows that calculated residual tensile stress varies in relation to a decrease in both factor values. However, there is a increase in calculated residual compressive stress with a decrease in the strain release factor A value, but there is an decrease with a decrease in strain release factor B value. Calculated residual stress applied to elastic strain release factors is compared with that applied to amended plastic strain release factors for Q235 steel. The maximum deviation between calculated residual stress and test stress is reduced from 21.1 to 1.0%,and for Q345 steel from 26.5 to 1.2%. It is thus evident that the plastic correction formula proposed in this paper can be used in calculations when conducting a residual stress test.
文摘针对线性调频(LFM,Linear Frequency Modulation)信号盲处理结果的可靠性评估问题,提出了一种基于循环频率特征分析的处理算法.首先对观测信号进行调制方式识别及参数估计,并据此建立参考信号,后将观测信号与参考信号作相关运算.通过检测相关序列在零频率附近是否存在循环频率,实现对LFM信号盲处理结果的可靠性检验.文中对所提出检验算法的错误概率进行了理论推导,并以常用的离散多项式变换(DPT,Discrete Polynomial Transform)法为例进行了实证分析.仿真结果表明,相对于已有时域方法而言,本文算法无需估计信噪比,且在低信噪比条件下具有更好的统计性能.