Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction a...Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further.展开更多
Introduction Na and K are two most important cations in salty water,and also are two typical ions in animals’body fluids.The mineral,bioapatite,is a form of carbonated hydroxylapatite,which makes up over 50 wt.%of bones
For the superconductors(Rb_xK_(1-x))_3C_(60)(x=0.1),according to BCS theory and assuming that the virtual phonon acting on electron-pair is corresponding to the intrasolecular vibration in the bnckminnterfullerene C_(...For the superconductors(Rb_xK_(1-x))_3C_(60)(x=0.1),according to BCS theory and assuming that the virtual phonon acting on electron-pair is corresponding to the intrasolecular vibration in the bnckminnterfullerene C_(60),a linear relationship of the superconducting transition temperature T_c with x has been derived,which is in agreement with the experimentals,展开更多
Objective:To systematically explore the effect and mechanism of melastomatis dodecandri herba(Melastoma dodecandrum Lour.)in the treatment of hepatitis based on network pharmacology.Method:We evaluated the hepatoprote...Objective:To systematically explore the effect and mechanism of melastomatis dodecandri herba(Melastoma dodecandrum Lour.)in the treatment of hepatitis based on network pharmacology.Method:We evaluated the hepatoprotective effects of M.dodecandrum in concanavalin A(Con A)-induced hepatitis in mice by assessing survival rate,histological analysis,serum transaminases,and related cytokines.Then the mechanism of action was predicted by a network pharmacology-based strategy.Based on the results,we measured the hepatic expression of related genes at mRNA level and proteins related to the phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt)and nuclear factorkappa B(NF-кB)pathways.Results:Our study results clearly demonstrated that M.dodecandrum pretreatment significantly alleviated liver injury.This was demonstrated by an increase in survival rate,decreased severity of liver damage,and reduced serum transaminase levels compared with those in the Con A group.Moreover,M.dodecandrum significantly reduced the serum levels of tumor necrosis factor-a,interleukin-6,and interferon-g and increased the liver levels of superoxide dismutase,which indicated that M.dodecandrum exhibits anti-inflammatory and antioxidant activities.On the basis of network pharmacology,50 nodes were selected as major hubs based on their topological importance.Pathway enrichment analyses indicated that the putative targets of M.dodecandrum mostly participate in various pathways associated with the anti-inflammation response,which implies the underlying mechanism by which M.dodecandrum acts on hepatitis.Real-time fluorescent quantitative PCR analysis showed that M.dodecandrum downregulates the mRNA expression of interleukin-6,Toll-like receptor 7,interleukin-1 receptor-associated kinase-4,NF-кB and tumor necrosis factor-a in liver tissues.Western blotting showed that M.dodecandrum pretreatment protected against inflammation through activating the PI3K-Akt pathway by upregulating phosphorylated Akt(p-Akt)expression and suppressing NF-кB activation by inhibiting the phosphorylation of IKK,IkBa,and p65.Conclusion:The present work demonstrated the hepatoprotective effects of M.dodecandrum by regulating the PI3K/Akt and NF-кB pathways in Con A-induced mice,which provide insights into the treatment of hepatitis using M.dodecandrum.展开更多
The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa i...The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa in a frequency range of 10-1 Hz–106 Hz. The measured electrical conductivity along the ⊥ [001] axis direction decreases with increasing pressure, and the activation energy and activation volume of charge carriers are determined to be 1.04 ± 0.06 e V and 2.51 ± 0.19 cm~3/mole, respectively. The electrical conductivity of K-feldspar is highly anisotropic, and its value along the⊥ [001] axis is approximately three times higher than that along the ⊥ [100] axis. At 2.0 GPa, the diffusion coefficient of ionic potassium is obtained from the electrical conductivity data using the Nernst–Einstein equation. The measured electrical conductivity and calculated diffusion coefficient of potassium suggest that the main conduction mechanism is of ionic conduction, therefore the dominant charge carrier is transferred between normal lattice potassium positions and adjacent interstitial sites along the thermally activated electric field.展开更多
Various undercoolings 14-232 K of bulk K4169 superalloys were obtained by the method of molten glass fluxing combined with superheating cycling and the mechanical properties of undercooled K4169 with as-solidified sta...Various undercoolings 14-232 K of bulk K4169 superalloys were obtained by the method of molten glass fluxing combined with superheating cycling and the mechanical properties of undercooled K4169 with as-solidified state were tested. Microstructures and phases composition in undercooled bulk K4169 superalloy were identified by transmission electron microscope (TEM), scanning electron microscope (SEM) and optical microscopy (OM). The morphology of dendrites, grain size and intergranular phase all change with the increased undercooling. Meanwhile, the relationship between microstructure of undercooled K4169 superalloy and tensile properties was investigated. The experimental results show that the uniform distribution of Laves phase and the decrease of grain size and intergranular phase content are favorable for the improvement of mechanical properties. The maximum tensile strength and elongation obtained at undercooling of 232 K are 932.2 MPa and 6.5%, respectively.展开更多
The Mg-3.0Nd-0.2Zn-0.4Zr (NZ30K) alloys were prepared by direct-chill casting (DCC) and sand mould casting (SMC) processes,respectively and their microstructures and mechanical properties were investigated.The results...The Mg-3.0Nd-0.2Zn-0.4Zr (NZ30K) alloys were prepared by direct-chill casting (DCC) and sand mould casting (SMC) processes,respectively and their microstructures and mechanical properties were investigated.The results indicate that casting method plays a remarkable influence on the microstructure and mechanical properties of as-cast NZ30K alloy.The grain size increases from 35-40μm in the billets made by the DCC to about 100-120μm in the billets by the SMC.The aggregation of Mg12Nd usually found at the triple joints of grain boundaries in the billets prepared by SMC while is not observable from the billets by DCC.The tensile strengths and elongations of the billets are 195.2 MPa and 15.5% by DCC,and 162.5 MPa and 3.2% by SMC,respectively.The tensile strength of the alloy by DCC is remarkably enhanced by T6 heat treatment,which reached 308.5 MPa.Fracture surfaces of NZ30K alloy have been characterized as intergranular fracture by SMC and quasi-cleavage fracture by DCC,respectively.展开更多
The surface acoustic wave (SAW) technique is a precise and nondestructive method to detect the mechanical charac- teristics of the thin low dielectric constant (low-k) film by matching the theoretical dispersion c...The surface acoustic wave (SAW) technique is a precise and nondestructive method to detect the mechanical charac- teristics of the thin low dielectric constant (low-k) film by matching the theoretical dispersion curve with the experimental dispersion curve. In this paper, the influence of sample roughness on the precision of SAW mechanical detection is inves- tigated in detail. Random roughness values at the surface of low-k film and at the interface between this low-k film and the substrate are obtained by the Monte Carlo method. The dispersive characteristic of SAW on the layered structure with rough surface and rough interface is modeled by numerical simulation of finite element method. The Young's moduli of the Black DiamondTM samples with different roughness values are determined by SAWs in the experiment. The results show that the influence of sample roughness is very small when the root-mean-square (RMS) of roughness is smaller than 50 nm and correlation length is smaller than 20 μm. This study indicates that the SAW technique is reliable and precise in the nondestructive mechanical detection for low-k films.展开更多
文摘Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further.
文摘Introduction Na and K are two most important cations in salty water,and also are two typical ions in animals’body fluids.The mineral,bioapatite,is a form of carbonated hydroxylapatite,which makes up over 50 wt.%of bones
文摘For the superconductors(Rb_xK_(1-x))_3C_(60)(x=0.1),according to BCS theory and assuming that the virtual phonon acting on electron-pair is corresponding to the intrasolecular vibration in the bnckminnterfullerene C_(60),a linear relationship of the superconducting transition temperature T_c with x has been derived,which is in agreement with the experimentals,
基金This work was supported by the National Key R&D Program of China(2018YFC1706800).
文摘Objective:To systematically explore the effect and mechanism of melastomatis dodecandri herba(Melastoma dodecandrum Lour.)in the treatment of hepatitis based on network pharmacology.Method:We evaluated the hepatoprotective effects of M.dodecandrum in concanavalin A(Con A)-induced hepatitis in mice by assessing survival rate,histological analysis,serum transaminases,and related cytokines.Then the mechanism of action was predicted by a network pharmacology-based strategy.Based on the results,we measured the hepatic expression of related genes at mRNA level and proteins related to the phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt)and nuclear factorkappa B(NF-кB)pathways.Results:Our study results clearly demonstrated that M.dodecandrum pretreatment significantly alleviated liver injury.This was demonstrated by an increase in survival rate,decreased severity of liver damage,and reduced serum transaminase levels compared with those in the Con A group.Moreover,M.dodecandrum significantly reduced the serum levels of tumor necrosis factor-a,interleukin-6,and interferon-g and increased the liver levels of superoxide dismutase,which indicated that M.dodecandrum exhibits anti-inflammatory and antioxidant activities.On the basis of network pharmacology,50 nodes were selected as major hubs based on their topological importance.Pathway enrichment analyses indicated that the putative targets of M.dodecandrum mostly participate in various pathways associated with the anti-inflammation response,which implies the underlying mechanism by which M.dodecandrum acts on hepatitis.Real-time fluorescent quantitative PCR analysis showed that M.dodecandrum downregulates the mRNA expression of interleukin-6,Toll-like receptor 7,interleukin-1 receptor-associated kinase-4,NF-кB and tumor necrosis factor-a in liver tissues.Western blotting showed that M.dodecandrum pretreatment protected against inflammation through activating the PI3K-Akt pathway by upregulating phosphorylated Akt(p-Akt)expression and suppressing NF-кB activation by inhibiting the phosphorylation of IKK,IkBa,and p65.Conclusion:The present work demonstrated the hepatoprotective effects of M.dodecandrum by regulating the PI3K/Akt and NF-кB pathways in Con A-induced mice,which provide insights into the treatment of hepatitis using M.dodecandrum.
基金Project supported by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant No.XDB 18010401)the Key Research Program of Frontier Sciences of CAS(Grant No.QYZDB-SSW-DQC009)+2 种基金the“135”Program of the Institute of Geochemistry of CASthe Hundred-Talent Program of CASthe National Natural Science Foundation of China(Grant Nos.41474078,41774099,and 41772042)
文摘The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa in a frequency range of 10-1 Hz–106 Hz. The measured electrical conductivity along the ⊥ [001] axis direction decreases with increasing pressure, and the activation energy and activation volume of charge carriers are determined to be 1.04 ± 0.06 e V and 2.51 ± 0.19 cm~3/mole, respectively. The electrical conductivity of K-feldspar is highly anisotropic, and its value along the⊥ [001] axis is approximately three times higher than that along the ⊥ [100] axis. At 2.0 GPa, the diffusion coefficient of ionic potassium is obtained from the electrical conductivity data using the Nernst–Einstein equation. The measured electrical conductivity and calculated diffusion coefficient of potassium suggest that the main conduction mechanism is of ionic conduction, therefore the dominant charge carrier is transferred between normal lattice potassium positions and adjacent interstitial sites along the thermally activated electric field.
基金Project(2011CB610406)supported by the National Basic Research Program of China
文摘Various undercoolings 14-232 K of bulk K4169 superalloys were obtained by the method of molten glass fluxing combined with superheating cycling and the mechanical properties of undercooled K4169 with as-solidified state were tested. Microstructures and phases composition in undercooled bulk K4169 superalloy were identified by transmission electron microscope (TEM), scanning electron microscope (SEM) and optical microscopy (OM). The morphology of dendrites, grain size and intergranular phase all change with the increased undercooling. Meanwhile, the relationship between microstructure of undercooled K4169 superalloy and tensile properties was investigated. The experimental results show that the uniform distribution of Laves phase and the decrease of grain size and intergranular phase content are favorable for the improvement of mechanical properties. The maximum tensile strength and elongation obtained at undercooling of 232 K are 932.2 MPa and 6.5%, respectively.
基金supported by the National High-tech R&D Program of China (863 Program),grant No.2009AA03Z521the foundation of Shanghai Rising-Star Program (A type),grant No. 09QA1403100
文摘The Mg-3.0Nd-0.2Zn-0.4Zr (NZ30K) alloys were prepared by direct-chill casting (DCC) and sand mould casting (SMC) processes,respectively and their microstructures and mechanical properties were investigated.The results indicate that casting method plays a remarkable influence on the microstructure and mechanical properties of as-cast NZ30K alloy.The grain size increases from 35-40μm in the billets made by the DCC to about 100-120μm in the billets by the SMC.The aggregation of Mg12Nd usually found at the triple joints of grain boundaries in the billets prepared by SMC while is not observable from the billets by DCC.The tensile strengths and elongations of the billets are 195.2 MPa and 15.5% by DCC,and 162.5 MPa and 3.2% by SMC,respectively.The tensile strength of the alloy by DCC is remarkably enhanced by T6 heat treatment,which reached 308.5 MPa.Fracture surfaces of NZ30K alloy have been characterized as intergranular fracture by SMC and quasi-cleavage fracture by DCC,respectively.
基金Project supported by the National Natural Science Foundation of China(Grant No.60876072)the Tianjin Research Program of Application Foundation and Advanced Technology,China(Grant No.10JCZDJC15500)
文摘The surface acoustic wave (SAW) technique is a precise and nondestructive method to detect the mechanical charac- teristics of the thin low dielectric constant (low-k) film by matching the theoretical dispersion curve with the experimental dispersion curve. In this paper, the influence of sample roughness on the precision of SAW mechanical detection is inves- tigated in detail. Random roughness values at the surface of low-k film and at the interface between this low-k film and the substrate are obtained by the Monte Carlo method. The dispersive characteristic of SAW on the layered structure with rough surface and rough interface is modeled by numerical simulation of finite element method. The Young's moduli of the Black DiamondTM samples with different roughness values are determined by SAWs in the experiment. The results show that the influence of sample roughness is very small when the root-mean-square (RMS) of roughness is smaller than 50 nm and correlation length is smaller than 20 μm. This study indicates that the SAW technique is reliable and precise in the nondestructive mechanical detection for low-k films.