The construction of traditional finite element geometry (i.e., the meshing procedure) is time consuming and creates geometric errors. The drawbacks can be over- came by the Isogeometric Analysis (IGA), which integ...The construction of traditional finite element geometry (i.e., the meshing procedure) is time consuming and creates geometric errors. The drawbacks can be over- came by the Isogeometric Analysis (IGA), which integrates the computer aided design and structural analysis in a unified way. A new IGA beam element is developed by integrating the displacement field of the element, which is approximated by the NURBS basis, with the internal work formula of Euler-Bernoulli beam theory with the small deformation and elastic assumptions. Two cases of the strong coupling of IGA elements, "beam to beam" and "beam to shell", are also discussed. The maximum relative errors of the deformation in the three directions of can- tilever beam benchmark problem between analytical solu- tions and IGA solutions are less than 0.1%, which illustrate the good performance of the developed IGA beam element. In addition, the application of the developed IGA beam element in the Root Mean Square (RMS) error analysis of reflector antenna surface, which is a kind of typical func- tional surface whose precision is closely related to the product's performance, indicates that no matter how coarse the discretization is, the IGA method is able to achieve the accurate solution with less degrees of freedom than stan- dard Finite Element Analysis (FEA). The proposed research provides an effective alternative to standard FEA for shape error analysis of functional surface.展开更多
A comprehensive study on the role of the phase errors distribution on the performances of the phased array systems has been led using a complete and behavioral model for radiation-pattern characteristics. The used mod...A comprehensive study on the role of the phase errors distribution on the performances of the phased array systems has been led using a complete and behavioral model for radiation-pattern characteristics. The used model has many input parameters and it has a lot of features, such as parameters simulations with results analysis, unconventional two-dimensional color graph representation capability in order to show more clearly the results. The results of the study have been discussed and reported. The main achievement of this work is the demonstration that the RMS phase error is a valuable figure of merit of phased array systems but it is not sufficient to completely describe the behavior of a real system. Indeed, this work has shown how the phase errors distribution actually affects the performances of the phased arrays antennas.展开更多
Because surface-based monitoring of hydraulic fracturing is not restricted by borehole geometry or the difficulties in maintaining subsurface equipment, it is becoming an increasingly common part of microseismic monit...Because surface-based monitoring of hydraulic fracturing is not restricted by borehole geometry or the difficulties in maintaining subsurface equipment, it is becoming an increasingly common part of microseismic monitoring. The ability to determine an accurate velocity model for the monitored area directly affects the accuracy of microseismic event locations. However, velocity model calibration for location with surface instruments is difficult for several reasons: well log measurements are often inaccurate or incomplete, yielding intractable models; ori- gin times of perforation shots are not always accurate; and the non-uniqueness of velocity models obtained by inver- sion becomes especially problematic when only perforation shots are used. In this paper, we propose a new approach to overcome these limitations. We establish an initial velocity model from well logging data, and then use the root mean square (RMS) error of double-difference arrival times as a proxy measure for the misfit between the well log velocity model and the true velocity structure of the medium. Double-difference RMS errors are reduced by using a very fast simulated annealing for model perturbance, and a sample set of double-difference RMS errors is then selec- ted to determine an empirical threshold. This threshold value is set near the minimum RMS of the selected samples, and an appropriate number of travel times within the threshold range are chosen. The corresponding velocity models are then used to relocate the perforation-shot. We use the velocity model with the smallest relative location errors as the basis for microseismic location. Numerical analysis with exact input velocity models shows that although large differences exist between the calculated and true velocity models, perforation shots can still be located to their actual positions with the proposed technique; the location inaccuracy of the perforation is 〈2 m. Further tests on field data demonstrate the validity of this technique.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51490663,51475418,51521064)Zhejiang Provincal Key Development Program of China(Grant No.2017C01045)
文摘The construction of traditional finite element geometry (i.e., the meshing procedure) is time consuming and creates geometric errors. The drawbacks can be over- came by the Isogeometric Analysis (IGA), which integrates the computer aided design and structural analysis in a unified way. A new IGA beam element is developed by integrating the displacement field of the element, which is approximated by the NURBS basis, with the internal work formula of Euler-Bernoulli beam theory with the small deformation and elastic assumptions. Two cases of the strong coupling of IGA elements, "beam to beam" and "beam to shell", are also discussed. The maximum relative errors of the deformation in the three directions of can- tilever beam benchmark problem between analytical solu- tions and IGA solutions are less than 0.1%, which illustrate the good performance of the developed IGA beam element. In addition, the application of the developed IGA beam element in the Root Mean Square (RMS) error analysis of reflector antenna surface, which is a kind of typical func- tional surface whose precision is closely related to the product's performance, indicates that no matter how coarse the discretization is, the IGA method is able to achieve the accurate solution with less degrees of freedom than stan- dard Finite Element Analysis (FEA). The proposed research provides an effective alternative to standard FEA for shape error analysis of functional surface.
文摘A comprehensive study on the role of the phase errors distribution on the performances of the phased array systems has been led using a complete and behavioral model for radiation-pattern characteristics. The used model has many input parameters and it has a lot of features, such as parameters simulations with results analysis, unconventional two-dimensional color graph representation capability in order to show more clearly the results. The results of the study have been discussed and reported. The main achievement of this work is the demonstration that the RMS phase error is a valuable figure of merit of phased array systems but it is not sufficient to completely describe the behavior of a real system. Indeed, this work has shown how the phase errors distribution actually affects the performances of the phased arrays antennas.
基金supported by the National Natural Science Foundation of China(No.41074074)
文摘Because surface-based monitoring of hydraulic fracturing is not restricted by borehole geometry or the difficulties in maintaining subsurface equipment, it is becoming an increasingly common part of microseismic monitoring. The ability to determine an accurate velocity model for the monitored area directly affects the accuracy of microseismic event locations. However, velocity model calibration for location with surface instruments is difficult for several reasons: well log measurements are often inaccurate or incomplete, yielding intractable models; ori- gin times of perforation shots are not always accurate; and the non-uniqueness of velocity models obtained by inver- sion becomes especially problematic when only perforation shots are used. In this paper, we propose a new approach to overcome these limitations. We establish an initial velocity model from well logging data, and then use the root mean square (RMS) error of double-difference arrival times as a proxy measure for the misfit between the well log velocity model and the true velocity structure of the medium. Double-difference RMS errors are reduced by using a very fast simulated annealing for model perturbance, and a sample set of double-difference RMS errors is then selec- ted to determine an empirical threshold. This threshold value is set near the minimum RMS of the selected samples, and an appropriate number of travel times within the threshold range are chosen. The corresponding velocity models are then used to relocate the perforation-shot. We use the velocity model with the smallest relative location errors as the basis for microseismic location. Numerical analysis with exact input velocity models shows that although large differences exist between the calculated and true velocity models, perforation shots can still be located to their actual positions with the proposed technique; the location inaccuracy of the perforation is 〈2 m. Further tests on field data demonstrate the validity of this technique.