AIM: To clarify the usefulness of a new method for performing a pancreaticojejunostomy by using a fast-absorbable suture material irradiated polyglactin 910, and a temporary stent tube for a narrow pancreatic duct wit...AIM: To clarify the usefulness of a new method for performing a pancreaticojejunostomy by using a fast-absorbable suture material irradiated polyglactin 910, and a temporary stent tube for a narrow pancreatic duct with a soft pancreatic texture.METHODS: Among 63 consecutive patients with soft pancreas undergoing a pancreaticoduodenectomy from 2003 to 2006, 35 patients were treated with a new reconstructive method. Briefly, after the pancreatic transaction, a stent tube was inserted into the lumen of the pancreatic duct and ligated with it by a fast-absorbable suture. Another tip of the stent tube was introduced into the intestinal lumen at the jejunal limb, where a purse-string suture was made by another fast-absorbable suture to roughly fix the tube. The pancreaticojejunostomy was completed by ligating two fast-absorbable sutures to approximate the ductal end and the jejunal mucosa, and by adding a rough anastomosis between the pancreatic parenchyma and the seromuscular layer of the jejunum. The initial surgical results with this method were retrospectively compared with those of the 28 patients treated with conventional duct-to-mucosa anastomosis.RESULTS: The incidences of postoperative morbidity including pancreatic fistula were comparable between the two groups (new; 3%-17% vs conventional; 7%-14% according to the definitions). There was no mortality and re-admission. Late complications were also rarely seen.CONCLUSION: A pancreaticojejunostomy using an irradiated polyglactin 910 suture material and a temporary stent is easy to perform and is feasible even in cases with a narrow pancreatic duct and a normal soft pancreas.展开更多
In order to ensure the safety of coal mine shaft construction, a double-layer steel plate concrete composite shaft wall structure was proposed. However, fewer studies were conducted on this structure, which made engin...In order to ensure the safety of coal mine shaft construction, a double-layer steel plate concrete composite shaft wall structure was proposed. However, fewer studies were conducted on this structure, which made engineers too confused to fully recognize its feasibility of this structure. Hence, based on the previous experimental research on the Taohutu mine construction project in Ordos in Inner Mongolia, this research paper aims to provide a widely deep numerical analysis by the usage of the finite element software, in fact, to establish the corresponding numerical analysis model and make a comparison with the experimental data to get the rationality of the verified model. The influence of the composite characteristics of the steel plate and concrete on the ultimate bearing capacity and stress field of the shaft wall structure is studied here through the method of multi-factor analysis. Also, the optimal design scheme of the double-layer steel plate and concrete composite shaft wall structure is proposed in this research paper.展开更多
To further investigate the one-dimensional(1D)rheological consolidation mechanism of double-layered soil,the fractional derivative Merchant model(FDMM)and the non-Darcian flow model with the non-Newtonian index are re...To further investigate the one-dimensional(1D)rheological consolidation mechanism of double-layered soil,the fractional derivative Merchant model(FDMM)and the non-Darcian flow model with the non-Newtonian index are respectively introduced to describe the deformation of viscoelastic soil and the flow of pore water in the process of consolidation.Accordingly,an 1D rheological consolidation equation of double-layered soil is obtained,and its numerical analysis is performed by the implicit finite difference method.In order to verify its validity,the numerical solutions by the present method for some simplified cases are compared with the results in the related literature.Then,the influence of the revelent parameters on the rheological consolidation of double-layered soil are investigated.Numerical results indicate that the parameters of non-Darcian flow and FDMM of the first soil layer greatly influence the consolidation rate of double-layered soil.As the decrease of relative compressibility or the increase of relative permeability between the lower soil and the upper soil,the dissipation rate of excess pore water pressure and the settlement rate of the ground will be accelerated.Increasing the relative thickness of soil layer with high permeability or low compressibility will also accelerate the consolidation rate of double-layered soil.展开更多
Chronic venous incompetence of the lower extramities is a common disease whose etilogy and surgical treatment has been proposed by several authors. Histner (1975) discribed primary valvular incompetency and the effect...Chronic venous incompetence of the lower extramities is a common disease whose etilogy and surgical treatment has been proposed by several authors. Histner (1975) discribed primary valvular incompetency and the effect of valvuloplasty. By the usage of phlebographe, we found that the cause of valvular incompetence was the dilatation of venous lumen, which made the valve relatively smaller. The function of valve may be restored by the circular suture of femoral vein wall below the first valve so as to reduce the dilated venous lumen. during the period from 1984 to 1994, 151 cases have been treated by this new technique. This report presents our experience in using encircling constricting suture method of the femoral venous wall.展开更多
Interaction between high-intensity pulsed ion beam (HIPIB) and a double-layer target with titanium film on top of aluminum substrate was simulated. The two-dimensional nonlinear thermal conduction equations, with th...Interaction between high-intensity pulsed ion beam (HIPIB) and a double-layer target with titanium film on top of aluminum substrate was simulated. The two-dimensional nonlinear thermal conduction equations, with the deposited energy in the target taken as source term, were derived and solved by finite differential method. As a result, the two-dimensional spatial and temporal evolution profiles of temperature were obtained for a titanium/aluminum double-layer target irradiated by a pulse of HIPIB. The effects of ion beam current density on the phase state of the target materials near the film and substrate interface were analyzed. Both titanium and aluminum were melted near the interface after a shot when the ion beam current density fell in the range of 100 A/cm2 to 200 A/cm2.展开更多
Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable p...Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable polyethylene glycol with organic monomers, resorcinol and formaldehyde and then subjected to pyrolization at 1 000 ℃. The influences of mass ratio of PEG to the theoretical yield of RF xerogel, m(PEG)/m(RF) and the (relative) molecular mass of PEG on the pore structure and electric double layer capacitance(EDLC) performance of PEG-RF carbon xerogels were investigated. The results show that PEG under different conditions leads to the difference of phase separation structure of the polymer blend and thus the change of pore structure of PEG-RF carbon xerogels. Specific surface area and capacity of PEG-RF carbon xerogels in 30% H2SO4 solution can reach (755 m2/g) and 150 F/g, respectively. Their surface can be fully utilized to form electric double layer. However, the pore structure differences of PEG-RF carbon xerogels result in their different EDLC performances. The distributed capacitance effect increases with decreasing the pore size of PEG-RF carbon xerogels.展开更多
Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. ...Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. Based on the simulated annealing genetic algorithm (SAGA) and the simplex algorithm, an efficient and robust 2-D nonlinear method for seismic travel-time inversion is presented in this paper. First we do a global search over a large range by SAGA and then do a rapid local search using the simplex method. A multi-scale tomography method is adopted in order to reduce non-uniqueness. The velocity field is divided into different spatial scales and velocities at the grid nodes are taken as unknown parameters. The model is parameterized by a bi-cubic spline function. The finite-difference method is used to solve the forward problem while the hybrid method combining multi-scale SAGA and simplex algorithms is applied to the inverse problem. The algorithm has been applied to a numerical test and a travel-time perturbation test using an anomalous low-velocity body. For a practical example, it is used in the study of upper crustal velocity structure of the A'nyemaqen suture zone at the north-east edge of the Qinghai-Tibet Plateau. The model test and practical application both prove that the method is effective and robust.展开更多
目的比较腹腔镜下T管缝合时预置缝线法与传统缝合方法的效果差异。方法回顾性分析2020年6月至2023年9月间空军特色医学中心行腹腔镜T管缝合的患者的临床资料,对照组采用传统的T管缝合方法,研究组采用预置缝线的T管缝合方法:间断缝合,进...目的比较腹腔镜下T管缝合时预置缝线法与传统缝合方法的效果差异。方法回顾性分析2020年6月至2023年9月间空军特色医学中心行腹腔镜T管缝合的患者的临床资料,对照组采用传统的T管缝合方法,研究组采用预置缝线的T管缝合方法:间断缝合,进针和出针时前一针的缝线不打紧,每组24例。比较两组患者T管缝合时间和注水试验阳性率。结果研究组术中T管缝合时间少于对照组[(12.61±0.88)min vs(17.62±0.58)min,t=-23.34,P<0.001],注水试验阳性率低于对照组[0 vs 25%(6/24),P=0.029],差异均有统计学意义。结论应用预置缝线的间断缝合法可提高腹腔镜下T管缝合速度,使缝合更确切,较传统方法有明显优势。展开更多
文摘AIM: To clarify the usefulness of a new method for performing a pancreaticojejunostomy by using a fast-absorbable suture material irradiated polyglactin 910, and a temporary stent tube for a narrow pancreatic duct with a soft pancreatic texture.METHODS: Among 63 consecutive patients with soft pancreas undergoing a pancreaticoduodenectomy from 2003 to 2006, 35 patients were treated with a new reconstructive method. Briefly, after the pancreatic transaction, a stent tube was inserted into the lumen of the pancreatic duct and ligated with it by a fast-absorbable suture. Another tip of the stent tube was introduced into the intestinal lumen at the jejunal limb, where a purse-string suture was made by another fast-absorbable suture to roughly fix the tube. The pancreaticojejunostomy was completed by ligating two fast-absorbable sutures to approximate the ductal end and the jejunal mucosa, and by adding a rough anastomosis between the pancreatic parenchyma and the seromuscular layer of the jejunum. The initial surgical results with this method were retrospectively compared with those of the 28 patients treated with conventional duct-to-mucosa anastomosis.RESULTS: The incidences of postoperative morbidity including pancreatic fistula were comparable between the two groups (new; 3%-17% vs conventional; 7%-14% according to the definitions). There was no mortality and re-admission. Late complications were also rarely seen.CONCLUSION: A pancreaticojejunostomy using an irradiated polyglactin 910 suture material and a temporary stent is easy to perform and is feasible even in cases with a narrow pancreatic duct and a normal soft pancreas.
文摘In order to ensure the safety of coal mine shaft construction, a double-layer steel plate concrete composite shaft wall structure was proposed. However, fewer studies were conducted on this structure, which made engineers too confused to fully recognize its feasibility of this structure. Hence, based on the previous experimental research on the Taohutu mine construction project in Ordos in Inner Mongolia, this research paper aims to provide a widely deep numerical analysis by the usage of the finite element software, in fact, to establish the corresponding numerical analysis model and make a comparison with the experimental data to get the rationality of the verified model. The influence of the composite characteristics of the steel plate and concrete on the ultimate bearing capacity and stress field of the shaft wall structure is studied here through the method of multi-factor analysis. Also, the optimal design scheme of the double-layer steel plate and concrete composite shaft wall structure is proposed in this research paper.
基金Project(51578511)supported by the National Natural Science Foundation of China。
文摘To further investigate the one-dimensional(1D)rheological consolidation mechanism of double-layered soil,the fractional derivative Merchant model(FDMM)and the non-Darcian flow model with the non-Newtonian index are respectively introduced to describe the deformation of viscoelastic soil and the flow of pore water in the process of consolidation.Accordingly,an 1D rheological consolidation equation of double-layered soil is obtained,and its numerical analysis is performed by the implicit finite difference method.In order to verify its validity,the numerical solutions by the present method for some simplified cases are compared with the results in the related literature.Then,the influence of the revelent parameters on the rheological consolidation of double-layered soil are investigated.Numerical results indicate that the parameters of non-Darcian flow and FDMM of the first soil layer greatly influence the consolidation rate of double-layered soil.As the decrease of relative compressibility or the increase of relative permeability between the lower soil and the upper soil,the dissipation rate of excess pore water pressure and the settlement rate of the ground will be accelerated.Increasing the relative thickness of soil layer with high permeability or low compressibility will also accelerate the consolidation rate of double-layered soil.
文摘Chronic venous incompetence of the lower extramities is a common disease whose etilogy and surgical treatment has been proposed by several authors. Histner (1975) discribed primary valvular incompetency and the effect of valvuloplasty. By the usage of phlebographe, we found that the cause of valvular incompetence was the dilatation of venous lumen, which made the valve relatively smaller. The function of valve may be restored by the circular suture of femoral vein wall below the first valve so as to reduce the dilated venous lumen. during the period from 1984 to 1994, 151 cases have been treated by this new technique. This report presents our experience in using encircling constricting suture method of the femoral venous wall.
基金supported by National Natural Science Foundation of China (No.10975026)
文摘Interaction between high-intensity pulsed ion beam (HIPIB) and a double-layer target with titanium film on top of aluminum substrate was simulated. The two-dimensional nonlinear thermal conduction equations, with the deposited energy in the target taken as source term, were derived and solved by finite differential method. As a result, the two-dimensional spatial and temporal evolution profiles of temperature were obtained for a titanium/aluminum double-layer target irradiated by a pulse of HIPIB. The effects of ion beam current density on the phase state of the target materials near the film and substrate interface were analyzed. Both titanium and aluminum were melted near the interface after a shot when the ion beam current density fell in the range of 100 A/cm2 to 200 A/cm2.
文摘Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable polyethylene glycol with organic monomers, resorcinol and formaldehyde and then subjected to pyrolization at 1 000 ℃. The influences of mass ratio of PEG to the theoretical yield of RF xerogel, m(PEG)/m(RF) and the (relative) molecular mass of PEG on the pore structure and electric double layer capacitance(EDLC) performance of PEG-RF carbon xerogels were investigated. The results show that PEG under different conditions leads to the difference of phase separation structure of the polymer blend and thus the change of pore structure of PEG-RF carbon xerogels. Specific surface area and capacity of PEG-RF carbon xerogels in 30% H2SO4 solution can reach (755 m2/g) and 150 F/g, respectively. Their surface can be fully utilized to form electric double layer. However, the pore structure differences of PEG-RF carbon xerogels result in their different EDLC performances. The distributed capacitance effect increases with decreasing the pore size of PEG-RF carbon xerogels.
基金supported by the National Natural Science Foundation of China (Grant Nos.40334040 and 40974033)the Promoting Foundation for Advanced Persons of Talent of NCWU
文摘Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. Based on the simulated annealing genetic algorithm (SAGA) and the simplex algorithm, an efficient and robust 2-D nonlinear method for seismic travel-time inversion is presented in this paper. First we do a global search over a large range by SAGA and then do a rapid local search using the simplex method. A multi-scale tomography method is adopted in order to reduce non-uniqueness. The velocity field is divided into different spatial scales and velocities at the grid nodes are taken as unknown parameters. The model is parameterized by a bi-cubic spline function. The finite-difference method is used to solve the forward problem while the hybrid method combining multi-scale SAGA and simplex algorithms is applied to the inverse problem. The algorithm has been applied to a numerical test and a travel-time perturbation test using an anomalous low-velocity body. For a practical example, it is used in the study of upper crustal velocity structure of the A'nyemaqen suture zone at the north-east edge of the Qinghai-Tibet Plateau. The model test and practical application both prove that the method is effective and robust.
文摘目的比较腹腔镜下T管缝合时预置缝线法与传统缝合方法的效果差异。方法回顾性分析2020年6月至2023年9月间空军特色医学中心行腹腔镜T管缝合的患者的临床资料,对照组采用传统的T管缝合方法,研究组采用预置缝线的T管缝合方法:间断缝合,进针和出针时前一针的缝线不打紧,每组24例。比较两组患者T管缝合时间和注水试验阳性率。结果研究组术中T管缝合时间少于对照组[(12.61±0.88)min vs(17.62±0.58)min,t=-23.34,P<0.001],注水试验阳性率低于对照组[0 vs 25%(6/24),P=0.029],差异均有统计学意义。结论应用预置缝线的间断缝合法可提高腹腔镜下T管缝合速度,使缝合更确切,较传统方法有明显优势。