To improve the performance of traditional mechanical shock absorber, a new type of high molecular polymer is formulated and applied to overloaded vehicle shock absorber. According to the operating principle of high-pe...To improve the performance of traditional mechanical shock absorber, a new type of high molecular polymer is formulated and applied to overloaded vehicle shock absorber. According to the operating principle of high-performance viscoelastic material shock absorber, the geometrical structure of shock absorber is designed and machined. Then its theoretical model is derived by using analytical method, and the impact test is carried out on high-performance viscoelastic material shock absorber. The results show that experimental and theoretical damping force curves have good agreement, which validates the credibility of theoretical model. The investigation provides a potential way to enhance damping performance and increase vehicle load.展开更多
Basically on the multi-body system dynamics,the virtual prototype of the hydraulic shock absorber for the bench test is developed in the ADAMS environment.Dynamic behaviors of the absorber are studied by both computer...Basically on the multi-body system dynamics,the virtual prototype of the hydraulic shock absorber for the bench test is developed in the ADAMS environment.Dynamic behaviors of the absorber are studied by both computer simulation and real test.Numerical predictions of dynamic responses are produced by the established virtual prototype of the absorber and compared with experimental results.It has been shown from the comparison that the vibration behaviors of the prototype with hysteretic damping characteristics are considered to be more identical with the bench test results than those of the same prototype with piecewise linear damping properties are.The current virtual prototype of the shock absorber is correct and can be a developing terrace for the optimizing design of the absorber and matching capability of the whole car.展开更多
To achieve the dual demand of resisting violent impact and attenuating vibration in vibration-impact-safety of protection for precision equipment such as MEMS packaging system, a theo- retical mathematical model of mu...To achieve the dual demand of resisting violent impact and attenuating vibration in vibration-impact-safety of protection for precision equipment such as MEMS packaging system, a theo- retical mathematical model of multi-medium coupling shock absorber is presented. The coupling of quadratic damping, linear damping, Coulomb damping and nonlinear spring are considered in the model. The approximate theoretical calculating formulae are deduced by introducing transformation-tactics. The contrasts between the analytical results and numerical integration results are developed. The resisting impact characteristics of the model are also analyzed in progress. In the meantime, the optimum model of the parameters matching selection for design of the shock absorber is built. The example design is illustrated to confirm the validity of the modeling method and the theoretical solution.展开更多
A microstructure oil-damping shock absorber was designed for the protection of electronic- packaging components in vibration-impact environments. The nonlinearity of the oil viscosity, the oil flow characteristics, ...A microstructure oil-damping shock absorber was designed for the protection of electronic- packaging components in vibration-impact environments. The nonlinearity of the oil viscosity, the oil flow characteristics, and the coupling between the oil and the physical structure were included in a mathematical model of the oil-damping shock absorber to attenuate vibrations. The results of multi-parameter-coupled dy- namic tests show that the mathematical model accurately simulates the actual physical system of the oil- damping shock absorber. The model could be used for engineering designs of vibration-impact isolation of electronic-packaging components.展开更多
This paper is devoted to the problem of finding optimized parameter combinations of automotive damper modules. Different cost functions using the amplitude spectrum of the excitation and the frequency response functio...This paper is devoted to the problem of finding optimized parameter combinations of automotive damper modules. Different cost functions using the amplitude spectrum of the excitation and the frequency response function of the car model will be investigated and it is shown that for three different arbitrary road excitations there exists a parameter combination of top mount stiffness, piston rod mass and damping constant that provides an optimum for the dynamic wheel load fluctuation. The achieved advantage of the optimized damper module regarding the dynamic wheel load fluctuation compared to a simple damper in a two mass vibration system can reach up to 20 percent.展开更多
基金National Natural Science Foundation of China(No.51476150)Funds for International Joint Research Program of Shanxi Province(No.2014081028)Scientific and Technologial Innovation Programs of Higher Education Institutions of Shanxi Province
文摘To improve the performance of traditional mechanical shock absorber, a new type of high molecular polymer is formulated and applied to overloaded vehicle shock absorber. According to the operating principle of high-performance viscoelastic material shock absorber, the geometrical structure of shock absorber is designed and machined. Then its theoretical model is derived by using analytical method, and the impact test is carried out on high-performance viscoelastic material shock absorber. The results show that experimental and theoretical damping force curves have good agreement, which validates the credibility of theoretical model. The investigation provides a potential way to enhance damping performance and increase vehicle load.
基金the Shanghai Administration of Education under Shanghai Key Disciplines Development Fund ProjectShanghai Automotive Technology Development Foundation under Contract NO.1 325 A
文摘Basically on the multi-body system dynamics,the virtual prototype of the hydraulic shock absorber for the bench test is developed in the ADAMS environment.Dynamic behaviors of the absorber are studied by both computer simulation and real test.Numerical predictions of dynamic responses are produced by the established virtual prototype of the absorber and compared with experimental results.It has been shown from the comparison that the vibration behaviors of the prototype with hysteretic damping characteristics are considered to be more identical with the bench test results than those of the same prototype with piecewise linear damping properties are.The current virtual prototype of the shock absorber is correct and can be a developing terrace for the optimizing design of the absorber and matching capability of the whole car.
基金This project is supported by National Defense Science Foundation of China (No.00J16.2.5.DZ0502)Foundation for Qualified Personnel of Jiangsu University, China(No.04JDG027)Provincial Natural Science Foundation of Guangxi. China(No.0339037, No.0141042).
文摘To achieve the dual demand of resisting violent impact and attenuating vibration in vibration-impact-safety of protection for precision equipment such as MEMS packaging system, a theo- retical mathematical model of multi-medium coupling shock absorber is presented. The coupling of quadratic damping, linear damping, Coulomb damping and nonlinear spring are considered in the model. The approximate theoretical calculating formulae are deduced by introducing transformation-tactics. The contrasts between the analytical results and numerical integration results are developed. The resisting impact characteristics of the model are also analyzed in progress. In the meantime, the optimum model of the parameters matching selection for design of the shock absorber is built. The example design is illustrated to confirm the validity of the modeling method and the theoretical solution.
基金Supported by the Natural Science Foundation of the Guangxi Zhuang Autonomous Region (Nos. 0339037 and 0141042) the National Defense Science Foundation of China (No. 00J16.2.5.DZ 0502) the National Science Foundation of Jiangsu University (No. 04JDG027) a
文摘A microstructure oil-damping shock absorber was designed for the protection of electronic- packaging components in vibration-impact environments. The nonlinearity of the oil viscosity, the oil flow characteristics, and the coupling between the oil and the physical structure were included in a mathematical model of the oil-damping shock absorber to attenuate vibrations. The results of multi-parameter-coupled dy- namic tests show that the mathematical model accurately simulates the actual physical system of the oil- damping shock absorber. The model could be used for engineering designs of vibration-impact isolation of electronic-packaging components.
文摘This paper is devoted to the problem of finding optimized parameter combinations of automotive damper modules. Different cost functions using the amplitude spectrum of the excitation and the frequency response function of the car model will be investigated and it is shown that for three different arbitrary road excitations there exists a parameter combination of top mount stiffness, piston rod mass and damping constant that provides an optimum for the dynamic wheel load fluctuation. The achieved advantage of the optimized damper module regarding the dynamic wheel load fluctuation compared to a simple damper in a two mass vibration system can reach up to 20 percent.