In this article,a series of high refractive indices(1.50-1.53)thiol phenyl polysiloxane(TPS)were synthesized via hydrolytic sol-gel reaction.The Fourier transform infrared spectra(FT-IR)and nuclear magnetic resonance ...In this article,a series of high refractive indices(1.50-1.53)thiol phenyl polysiloxane(TPS)were synthesized via hydrolytic sol-gel reaction.The Fourier transform infrared spectra(FT-IR)and nuclear magnetic resonance spectra(NMR)results showed that TPS conformed to the predicted structures.Natural terpene linalool was exploited as photocrosslinker to fabricate UV-curing linalool-polysiloxane hybrid films(LPH)with TPS via photoinitiated thiol-ene reaction.LPH rapidly cured under UV irradiation at the intensity of 80 mW/cm^(2) in 30 s,exhibiting good UV-curing properties.The optical transmittance of LPH in the wavelength of 300-800 nm was over 90%,exhibiting good optical transparency.The water contact angle and water vapor permeability results showed that the introduction of phenyl groups enhance the hydrophobicity and water vapor barrier properties of LPH.The results indicated the potential of LPHs in the applications of optical functional coatings.展开更多
A polymerized lyotropic liquid crystal monomer of sodium 3,4,5-tris(11-acryloxyundecyloxy)- benzoate was synthesized by a convenient route starting from 3,4,5-trihydroxybenzoic acid via esterification followed by et...A polymerized lyotropic liquid crystal monomer of sodium 3,4,5-tris(11-acryloxyundecyloxy)- benzoate was synthesized by a convenient route starting from 3,4,5-trihydroxybenzoic acid via esterification followed by etherification, acylation and finally neutralization. The chemi- cal structure was confirmed by Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance spectral analysis. The self-organization behavior of the monomer with deionized water in methanol at room temperature was also demonstrated. The assemblies were char- acterized by polarized optical microscope and X-ray diffraction. The results show that a solution containing 80:20 of the monomer to water was found to be able to self-organize into Lamellar (La) phase and 92:8 with inverted hexagonal (H]I) phase, which was in ac- cordance with the theoretical calculation of critical packing parameter. It suggests that the concentration of the monomer was the key factor to influence assembly structure. Addi- tionally, the acrylate conversion with different photoinitiators and nanostructure retention after polymerization were investigated. The research shows that the acrylate conversion of the monomer with Darocur2959 could reach up to 78% when irradiated by 30 mW/cm2 UV light of 365 nm for 30 min characterized by Real-time FT-IR as well as the sol-gel method. Meanwhile, the La and HII phase nanostructures were both retained after polymerization.展开更多
A novel UV-curable oligmer 1,4-cyclohexanedimethanol glycidyl ether acrylate(CHDMGEA) was synthesized by utilizing 1,4-cyclohexanedimethanol glycidyl ether(CHDMGE) and acrylic acid(AA) as starting materials, tri...A novel UV-curable oligmer 1,4-cyclohexanedimethanol glycidyl ether acrylate(CHDMGEA) was synthesized by utilizing 1,4-cyclohexanedimethanol glycidyl ether(CHDMGE) and acrylic acid(AA) as starting materials, triphenyl phosphine as catalyst and p-hydroxyanisole as inhibitor. The optimum synthetic conditions were that the concentration of triphenyl phosphine was 0.90% of reactants by weight, the concentration of p-hydroxyanisole was 0.20% of reactants by weight, the reaction temperature was 90-100 ℃, and the molar ratio of CHDMGE to AA was 0.5:1.1. The experimental results show that CHDMGEA is a kind of good UV-curable oligmer. The impact resistance of the UV-cured films with CHDMGEA as oligmer to prepare UV-curing coating was superior to that of the UV-cured films with bisphenol A diglycidyl ether diacrylate(BPGEA) as oligmer to prepare UV-curing coating.展开更多
UV-curable hyperbranched polyurethane acrylate-polyurethane diacrylate/SiO2 dispersion (HBPUA-PUDA/SiO2) was prepared with isophorone diisocyanate (IPDI), hyperbranched polyester Boltorn H20 (H20), hydroxy-ethyl...UV-curable hyperbranched polyurethane acrylate-polyurethane diacrylate/SiO2 dispersion (HBPUA-PUDA/SiO2) was prepared with isophorone diisocyanate (IPDI), hyperbranched polyester Boltorn H20 (H20), hydroxy-ethyl acrylate (HEA), polyethyleneglycol (PEG-200)and nano-SiO2. The UV curing kinetics of the films was investigated by FTIR. The results show that the curing speed of the films increases with the adding of nano-SiO2 and decreases with the adding of PUDA due to the slower chain movement. The thermal stability of the HBPUA-PUDA/SiO2 films was studied by using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA/FTIR). The results show that all films exhibit two degradation stages located at about 320 and 440℃ corresponding to the degradation for hard segments of urethane-acrylate and the degradation for soft segment and polyester core. In addition, the results from the analysis of TGA/FTIR also indicate that the decomposition temperature of HBPUA-PUDA/SiO2 film is 15℃ higher than that obtained for pure polymer. The degradation mechanism was proposed according to TGA/FTIR results.展开更多
In this paper, we combined high-end cationic UV-curable material with fluorinated chain obtaining a series of new fluorine-containing aromatic oxetane monomers via a mild nucleophilic substitution reaction. The struct...In this paper, we combined high-end cationic UV-curable material with fluorinated chain obtaining a series of new fluorine-containing aromatic oxetane monomers via a mild nucleophilic substitution reaction. The structures and properties of monomers were characterized using ~1 H-NMR, ^(19) F-NMR, dynamic viscosity tests and differential scanning calorimetry(DSC). It was determined that all of the fluorinated monomers obtained had much lower viscosity and higher thermostability after the introduction of hexafluorobenzene. Then, UV-curable coatings were prepared using four fluorine-containing aromatic oxetane monomers(FOX1-4); the UV-curing kinetics, with three kinds of initiators, and properties of the cured films were evaluated using real-time Fourier transform infrared(FTIR) spectroscopy, water and diiodomethane contact angle tests, surface energy calculations and scanning electron microscopy(SEM). The FTIR spectroscopy results showed that the coatings possessed excellent conversion rate(〉 99% with liquid initiator PAG-201 in 150 s), and as the fluorine content increased, the monomers exhibited decreased mobility with the increasing viscosity and worse solubility with fluorinated monomers, resulting in a lower conversion rate. Moreover, the coatings possessed favorable hydrophobic and oleophobic properties and low surface energies owing to the fluoride chains floating to the membrane-air interface, which was also confirmed by discrete concave structures in SEM images. These new kinds of monomers can replace traditional fluorinated cationic monomers applied to the fingerprint resistant, fouling resistant, scratch resistant and anti-aging coatings, adhesives or printing ink materials.展开更多
UV-curable polyurethane prepolymer and photoinitiator 1173 were facilely encapsulated in a poly(urea-formaldehyde) shell, which was in situ formed by the polymerization of formalde-hyde and urea in an oil-in-water e...UV-curable polyurethane prepolymer and photoinitiator 1173 were facilely encapsulated in a poly(urea-formaldehyde) shell, which was in situ formed by the polymerization of formalde-hyde and urea in an oil-in-water emulsion. The diameters of the microcapsules ranged from 118 μm to 663 μm depending on agitation speed, and were obtained via optical mi-croscopy and scanning electron microscopy analyses. The encapsulation percent and the yield of microcapsules prepared at the agitation speed of 600 r/min can reach 97.52wt% and 65.23wt%, respectively. When the water-borne polyurethane (WPU) coating embedded with the prepared microcapsules were scratched, the healing agent could be released from rup-tured microcapsules and lled the scribed region. The excellent anticorrosion properties of the WPU coating embedded with the prepared microcapsules were con rmed by the results obtained from both electrochemical impedance spectroscopy and Tafel curves.展开更多
UV-curable hyperbranched polyurethane (UV-HBPU) containing carboxyl groups was synthesized from isophorone diisocyanate (IPDI), diethanolamine (DEOA), polyethylene glycol (PEG-400), hydroxyethyl acrylate (HEA...UV-curable hyperbranched polyurethane (UV-HBPU) containing carboxyl groups was synthesized from isophorone diisocyanate (IPDI), diethanolamine (DEOA), polyethylene glycol (PEG-400), hydroxyethyl acrylate (HEA), and 2,2-his (hydroxymethyl) propionic acid (DMPA). The UV-HBPU was used as a negative-type photoresist for a printed circuit board (PCB). Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1HNMR) spectroscopy of UV-HBPUs indicated that the synthesis was successful. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) showed that the thermal stability of the UV-HBPUs decreased as the HEA content increased. The polymer exhibited excellent photoresist properties, and the resolution of circuits based on this negative-type photoresist reached 10 μm.展开更多
A novel UV-curable prepolymer polypropyleneglycol diglycidyl ether diacrylate (PPGGEA) was synthesized by utilizing polypropyleneglycol diglycidyl ether (PPGGE) and acrylic acid (AA) as starting materials, N, N-...A novel UV-curable prepolymer polypropyleneglycol diglycidyl ether diacrylate (PPGGEA) was synthesized by utilizing polypropyleneglycol diglycidyl ether (PPGGE) and acrylic acid (AA) as starting materials, N, N-dimethylbenzylamine as catalyst and p-hydroxyanisole as inhibitor. The optimum synthetic conditions were in the following: the concentration of N, N-dimethylbenzylamine was 0.80 wt% of reactants, the concentration of p-hydroxyanisole was 0.3 wt% of reactants, the reaction temperature was 90-110 ~C, and the molar ratio of PPGGE to AA was 1:2.2. Meanwhile, 1-hydroxycyclohexyl phenyl ketone of a UV-cured initiator was added to the synthesized PPGGEA to prepare a kind of UV-cured coating. The mechanical properties of the UV-cured films were determined, giving 29.99 MPa of tensile strength, 834.27 MPa of the Young's modulus and 5.66% of elongation at tear.展开更多
A novel UV-curable prepolymer hexanediol diglycidyl ether diacrylate (HDGEA) was synthesized by utilizing hexanediol diglycidyl ether (HDGE) and acrylic acid (AA) as starting materials, N, N-dimethylbenzylamine ...A novel UV-curable prepolymer hexanediol diglycidyl ether diacrylate (HDGEA) was synthesized by utilizing hexanediol diglycidyl ether (HDGE) and acrylic acid (AA) as starting materials, N, N-dimethylbenzylamine as catalyst and p-hydroxyanisole as inhibitor. The optimal synthetic conditions were that the concentration of N, N-dimethylbenzylamine was 0.80 wt% of reactants, the concentration of p-hydroxyanisole was 0.3 wt% of reactants, the reaction temperature was 90-110 ℃, and the molar ratio of HDGE to AA was 1︰2.2. Meanwhile, 1-hydroxycyclohexyl phenyl ketone of a UV-curing initiator was added to the synthesized HDGEA to prepare a kind of UV-curing coating. The mechanical properties of the UV-cured films were determined, giving 31.87 MPa of tensile strength, 871.88 MPa of Young's modulus and 6.77% of elongation at tear.展开更多
A novel photosensitive copolymer P(SS-co-AA-g-GMA)(PSAG) was synthesized and utilized to noncovalently functionalize pristine single-walled carbon nanotubes(SCNTs). PSAG was highly effective for the solubilizati...A novel photosensitive copolymer P(SS-co-AA-g-GMA)(PSAG) was synthesized and utilized to noncovalently functionalize pristine single-walled carbon nanotubes(SCNTs). PSAG was highly effective for the solubilization of SCNTs in water and validated by UV-vis absorption spectra experiments, resulting in homogeneous and stable PSAG-SCNT aqueous dispersion. The microstructure of SCNTs was observed through Raman spectroscopy and transmission electron microscopy. In addition, compared with the two common polymeric dispersants of Triton X-100 and PSS, PSAG demonstrated more effective performances for dispersing SCNTs under identical conditions. Furthermore, the photosensitive PSAG-SCNTs can be crosslinked after UV irradiation, leading to significant improvement in the water resistance of SCNT films. UV-cured films can be transferred to plastic wrap to form a flexible film with high electrical conductivity.展开更多
A series of photosensitive random copolymers (UPDHES) were prepared by introducing acrylate groups onto the side chain of the copolymer backbone of N, N-domethyl amimethyl methacrylate (DMAEMA), 2-hydroxypropyl ac...A series of photosensitive random copolymers (UPDHES) were prepared by introducing acrylate groups onto the side chain of the copolymer backbone of N, N-domethyl amimethyl methacrylate (DMAEMA), 2-hydroxypropyl acrylate (HEA), 2-ethylhexyl acrylate (EHA), and styrene (St) (PDHES). The molecular structure of UPDHES was characterized by FTIR, 1HNMR and GPC. The photopolymerization kinetics of UPDHES with different C=C content was investigated using real time FTIR in which it was found that the UPDHES system had notable photosensitivity. The effect of C=C content on the properties of cured films were studied by evaluating various film properties such as thermal stability, glass transition temperature and tensile properties. The thermal degradation of cured films was investigated via thermogravimetric analysis/infrared spectrometry (TGA-IR). Thus a series of UV-curable electrodeposition coatings with good photosensitivity and mechanical properties were prepared from a low-cost photosensitive random copolymer.展开更多
A novel UV-curable diluent benzyl glycidyl ether acrylate(BGEA) was synthesized by utilizing benzyl glycidyl ether(BGE) and acrylic acid(AA) as starting materials,N,N-dimethylbenzylamine as catalyst and p-hydroxyaniso...A novel UV-curable diluent benzyl glycidyl ether acrylate(BGEA) was synthesized by utilizing benzyl glycidyl ether(BGE) and acrylic acid(AA) as starting materials,N,N-dimethylbenzylamine as catalyst and p-hydroxyanisole as inhibitor.The optimum synthetic conditions were that the concentration of N,N-dimethylbenzylamine was 0.90% of reactants by weight,the concentration of p-hydroxyanisole was 0.20% of reactants by weight,the reaction temperature was 90-100℃,and the molar ratio of BGE to AA was 1.00:1.10.The experiment shows that BGEA is a kind of good diluent.The mechanical properties of the UV-cured films with BGEA as diluent to prepare UV-curing coating were superior to that of the UV-cured films with butyl acrylate as diluent to prepare UV-curing coating.展开更多
A novel UV-curable prepolymer neopentyl glycol diglycidyl ether diacrylate (NPGGEA) was synthesized by using neopentyl glycol diglycidyl ether (NPGGE) and acrylic acid (AA) as starting materials, N, N-dimethylbenzylam...A novel UV-curable prepolymer neopentyl glycol diglycidyl ether diacrylate (NPGGEA) was synthesized by using neopentyl glycol diglycidyl ether (NPGGE) and acrylic acid (AA) as starting materials, N, N-dimethylbenzylamine as catalyst and p-hydroxyanisole as inhibitor. The optimum synthetic conditions were taken as follows: The concentration of N,N-dimethylbenzylamine, 0.80% of reactants; the concentration of p-hydroxyanisole, 0.3% of reactants; the reaction temperature, 90-110 ; the molar ratio of NPGGE to AA, 1:2.2. Meanwhile, 1-hydroxycyclohexyl phenyl ketone of a UV-cured initiator was added to the synthesized NPGGEA to prepare a kind of UV-cured coating. Mechanical properties of the UV-cured films were determined, giving 28.75 MPa of tensile strength, 923.82 MPa of Young’s modulus and 5.51% of elongation at tear.展开更多
A new type of explosive ink formulation that can be quickly cured was prepared with unsaturated polyester as binder,styrene as active monomer,2,4,6-trimethylbenzoyl-diphenylphosphine oxide as photoinitiator,and hexani...A new type of explosive ink formulation that can be quickly cured was prepared with unsaturated polyester as binder,styrene as active monomer,2,4,6-trimethylbenzoyl-diphenylphosphine oxide as photoinitiator,and hexanitrohexaazaisowurtzitane(CL-20)as the main explosive.Then the explosive inkdirect writing technology was used to charge the micro-sized energetic devices,the curing mechanism of the explosive ink was discussed,and the microstructure,safety performance and explosive transfer performance of the explosive ink molded samples were tested and analyzed.Results indicate that the composite material has a fast curing molding speed,its hardness can reach 2H within 8 min.The crystal form of CL-20 in the molded sample is still type.The CL-20 based UV-curing explosive ink formulation has good compatibility,its apparent activation energy is increased by about 3.5 kj/mol.The composite presents a significant reduction in impact sensitivity and its characteristic drop height can reach 39.8 cm,whichis about 3 times higher than the raw material.When the line width of charge is 1.0 mm,the critical thickness of the explosion can reach 0.015 mm,and the explosion velocity is 7129 m/s when the charge density is 1.612 g/cm^(3).展开更多
Three kinds of UV-curable self-emulsified polyurethane-acrylate (PUA) prepolymer, i.e., conventional, chain extended and grafted PUAs, were prepared. The relatively small particle size of the PUA dispersions indicates...Three kinds of UV-curable self-emulsified polyurethane-acrylate (PUA) prepolymer, i.e., conventional, chain extended and grafted PUAs, were prepared. The relatively small particle size of the PUA dispersions indicates that the PUA prepolymers exhibit sufficient aqueous dispersibility. The PUA prepolymers can substantially lower the interfacial tension of water. Chain-extended PUA dispersions exhibit pseudoplastic behavior and thixotropy to a greater extent than do their conventional counterpart. The chain-extended and grafted PUA photocure to higher conversion than do the conventional PU equivalent. The results of DSC measurement suggest that there exists phase mixing between the hard and the soft segment phases for the PUAs based on PEG 400 that is the comparatively short soft segment in the prepolymer. For the PUA prepolymers based on PEG having higher M-n values, chain-extending and grafting could impede the phase separation between the hard and the soft segment domains. The adhesion, impact strength and flexibility of the photocured films were tested.展开更多
Photosensitive organosilicon monomers and polymers containing furylacrylate, cinnamate or methacrylate groups were synthesized. The chemical structure of these organosilicon monomers were confirmed by 1H NMR and eleme...Photosensitive organosilicon monomers and polymers containing furylacrylate, cinnamate or methacrylate groups were synthesized. The chemical structure of these organosilicon monomers were confirmed by 1H NMR and elemental analysis.The curing rates of these photosensitive polysiloxanes were also determined, all of them show a good UV-sensitivity. The UV-sensitivity of polysiloxanes containing pendent furylacrylates are comparable to that of polysiloxanes with either pendent cinnamate or pendent methacrylate groups.展开更多
A novel photosensitive prepolymer of trimethylolpropane triglycidylether triacrylate was synthesized by utilizing trimethylolpropane triglycidylether and acrylic acid as two starting materials, triphenyl phosphine as ...A novel photosensitive prepolymer of trimethylolpropane triglycidylether triacrylate was synthesized by utilizing trimethylolpropane triglycidylether and acrylic acid as two starting materials, triphenyl phosphine as catalyst and p-hydroxyanisole as inhibitor. The optimum synthesis conditions were that the concentration of triphenyl phosphine was 0.85wt% of reactants, the concentration of p-hydroxyanisole was 0.3wt% of reactants, and the reaction temperature was at 90-110 ℃. Benzil dimethyl ketal of a UV-cured initiator was added to the synthesized trimethylolpropane triglycidylether triacrylate to prepare a kind of UV-cured coating. The mechanical properties of the UV-cured films were determined, giving 28.43 MPa of tensile strength, 965.59MPa of (Young's) modulus and 4.10% of elongation at tear.展开更多
By the UV-curing method, a porous TiO2 film with net-like framework has been prepared. The characterization results of the porous TiO2 film by means of SEM, TEM, XRD, and N2 adsorption-desorption analysis show that th...By the UV-curing method, a porous TiO2 film with net-like framework has been prepared. The characterization results of the porous TiO2 film by means of SEM, TEM, XRD, and N2 adsorption-desorption analysis show that the net-like framework of the porous TiO2 film is composed of TiO2 nanoparticles, forming three dimensional porous structure. The porous TiO2 film exhibits higher photocatalytic activity for the degradation of methylene blue(MB) dye compared with the conventional dense TiO2 film.展开更多
Tung oil(TO)/ultraviolet(UV)photo-composite curing material possesses the characteristics of low curing temperature,low material shrinkage and low environmental pollution.Accordingly,this material must be developed an...Tung oil(TO)/ultraviolet(UV)photo-composite curing material possesses the characteristics of low curing temperature,low material shrinkage and low environmental pollution.Accordingly,this material must be developed and utilized with the conjugated double bonds contained in the long chain of the main structure(α-tung acid)molecules in the refined TO.The aforementioned material can be chemically modified using a variety of chemical methods to develop a new TO-based UV photocurable material due to its unique chemical properties.This work reviews the research progress of TO/UV photo-composite curing materials in recent years.Firstly,the chemical structure and application of TO and UV Photocatalysis Technology were briefly introduced.Secondly,the research status of novel TO/UV photo-composite curing materials developed by the Diels-Alder reaction was discussed.The method and curing effect of the UVcuring system constructed by other chemically modified TO were also discussed.Thereafter,the application of TO in industrial production is introduced from four directions:the application of TO in biodiesel,the application in synthetic resin,the application in self-healing coating and microcapsules and other applications.Finally,the research and application prospects of TO/UV photo-composite curing materials were presented.展开更多
基金the financial funding of the Guangdong Province Applied Science and Technology R&D Special Fund Project:Key Technologies for Industrialization of Sulfur-Resistant and High Refractive-Index LED Packaging Silicone Materials(2016B090930010).
文摘In this article,a series of high refractive indices(1.50-1.53)thiol phenyl polysiloxane(TPS)were synthesized via hydrolytic sol-gel reaction.The Fourier transform infrared spectra(FT-IR)and nuclear magnetic resonance spectra(NMR)results showed that TPS conformed to the predicted structures.Natural terpene linalool was exploited as photocrosslinker to fabricate UV-curing linalool-polysiloxane hybrid films(LPH)with TPS via photoinitiated thiol-ene reaction.LPH rapidly cured under UV irradiation at the intensity of 80 mW/cm^(2) in 30 s,exhibiting good UV-curing properties.The optical transmittance of LPH in the wavelength of 300-800 nm was over 90%,exhibiting good optical transparency.The water contact angle and water vapor permeability results showed that the introduction of phenyl groups enhance the hydrophobicity and water vapor barrier properties of LPH.The results indicated the potential of LPHs in the applications of optical functional coatings.
文摘A polymerized lyotropic liquid crystal monomer of sodium 3,4,5-tris(11-acryloxyundecyloxy)- benzoate was synthesized by a convenient route starting from 3,4,5-trihydroxybenzoic acid via esterification followed by etherification, acylation and finally neutralization. The chemi- cal structure was confirmed by Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance spectral analysis. The self-organization behavior of the monomer with deionized water in methanol at room temperature was also demonstrated. The assemblies were char- acterized by polarized optical microscope and X-ray diffraction. The results show that a solution containing 80:20 of the monomer to water was found to be able to self-organize into Lamellar (La) phase and 92:8 with inverted hexagonal (H]I) phase, which was in ac- cordance with the theoretical calculation of critical packing parameter. It suggests that the concentration of the monomer was the key factor to influence assembly structure. Addi- tionally, the acrylate conversion with different photoinitiators and nanostructure retention after polymerization were investigated. The research shows that the acrylate conversion of the monomer with Darocur2959 could reach up to 78% when irradiated by 30 mW/cm2 UV light of 365 nm for 30 min characterized by Real-time FT-IR as well as the sol-gel method. Meanwhile, the La and HII phase nanostructures were both retained after polymerization.
基金Funded by the Natural Science Foundation of Jiangxi Province(20142BAB206029)
文摘A novel UV-curable oligmer 1,4-cyclohexanedimethanol glycidyl ether acrylate(CHDMGEA) was synthesized by utilizing 1,4-cyclohexanedimethanol glycidyl ether(CHDMGE) and acrylic acid(AA) as starting materials, triphenyl phosphine as catalyst and p-hydroxyanisole as inhibitor. The optimum synthetic conditions were that the concentration of triphenyl phosphine was 0.90% of reactants by weight, the concentration of p-hydroxyanisole was 0.20% of reactants by weight, the reaction temperature was 90-100 ℃, and the molar ratio of CHDMGE to AA was 0.5:1.1. The experimental results show that CHDMGEA is a kind of good UV-curable oligmer. The impact resistance of the UV-cured films with CHDMGEA as oligmer to prepare UV-curing coating was superior to that of the UV-cured films with bisphenol A diglycidyl ether diacrylate(BPGEA) as oligmer to prepare UV-curing coating.
文摘UV-curable hyperbranched polyurethane acrylate-polyurethane diacrylate/SiO2 dispersion (HBPUA-PUDA/SiO2) was prepared with isophorone diisocyanate (IPDI), hyperbranched polyester Boltorn H20 (H20), hydroxy-ethyl acrylate (HEA), polyethyleneglycol (PEG-200)and nano-SiO2. The UV curing kinetics of the films was investigated by FTIR. The results show that the curing speed of the films increases with the adding of nano-SiO2 and decreases with the adding of PUDA due to the slower chain movement. The thermal stability of the HBPUA-PUDA/SiO2 films was studied by using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA/FTIR). The results show that all films exhibit two degradation stages located at about 320 and 440℃ corresponding to the degradation for hard segments of urethane-acrylate and the degradation for soft segment and polyester core. In addition, the results from the analysis of TGA/FTIR also indicate that the decomposition temperature of HBPUA-PUDA/SiO2 film is 15℃ higher than that obtained for pure polymer. The degradation mechanism was proposed according to TGA/FTIR results.
基金financially supported by the National Natural Science Foundation of China (No. 21574014)
文摘In this paper, we combined high-end cationic UV-curable material with fluorinated chain obtaining a series of new fluorine-containing aromatic oxetane monomers via a mild nucleophilic substitution reaction. The structures and properties of monomers were characterized using ~1 H-NMR, ^(19) F-NMR, dynamic viscosity tests and differential scanning calorimetry(DSC). It was determined that all of the fluorinated monomers obtained had much lower viscosity and higher thermostability after the introduction of hexafluorobenzene. Then, UV-curable coatings were prepared using four fluorine-containing aromatic oxetane monomers(FOX1-4); the UV-curing kinetics, with three kinds of initiators, and properties of the cured films were evaluated using real-time Fourier transform infrared(FTIR) spectroscopy, water and diiodomethane contact angle tests, surface energy calculations and scanning electron microscopy(SEM). The FTIR spectroscopy results showed that the coatings possessed excellent conversion rate(〉 99% with liquid initiator PAG-201 in 150 s), and as the fluorine content increased, the monomers exhibited decreased mobility with the increasing viscosity and worse solubility with fluorinated monomers, resulting in a lower conversion rate. Moreover, the coatings possessed favorable hydrophobic and oleophobic properties and low surface energies owing to the fluoride chains floating to the membrane-air interface, which was also confirmed by discrete concave structures in SEM images. These new kinds of monomers can replace traditional fluorinated cationic monomers applied to the fingerprint resistant, fouling resistant, scratch resistant and anti-aging coatings, adhesives or printing ink materials.
文摘UV-curable polyurethane prepolymer and photoinitiator 1173 were facilely encapsulated in a poly(urea-formaldehyde) shell, which was in situ formed by the polymerization of formalde-hyde and urea in an oil-in-water emulsion. The diameters of the microcapsules ranged from 118 μm to 663 μm depending on agitation speed, and were obtained via optical mi-croscopy and scanning electron microscopy analyses. The encapsulation percent and the yield of microcapsules prepared at the agitation speed of 600 r/min can reach 97.52wt% and 65.23wt%, respectively. When the water-borne polyurethane (WPU) coating embedded with the prepared microcapsules were scratched, the healing agent could be released from rup-tured microcapsules and lled the scribed region. The excellent anticorrosion properties of the WPU coating embedded with the prepared microcapsules were con rmed by the results obtained from both electrochemical impedance spectroscopy and Tafel curves.
基金Funded by the National Natural Science Foundation of China(Nos.51203063,51103064)
文摘UV-curable hyperbranched polyurethane (UV-HBPU) containing carboxyl groups was synthesized from isophorone diisocyanate (IPDI), diethanolamine (DEOA), polyethylene glycol (PEG-400), hydroxyethyl acrylate (HEA), and 2,2-his (hydroxymethyl) propionic acid (DMPA). The UV-HBPU was used as a negative-type photoresist for a printed circuit board (PCB). Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1HNMR) spectroscopy of UV-HBPUs indicated that the synthesis was successful. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) showed that the thermal stability of the UV-HBPUs decreased as the HEA content increased. The polymer exhibited excellent photoresist properties, and the resolution of circuits based on this negative-type photoresist reached 10 μm.
基金the Innovatory Group Program of the Natural Science Foundation of Hubei Province(No.2004ABC001)the National"863"Hi-tech Foundation of China(No.2002AA6Z3083)
文摘A novel UV-curable prepolymer polypropyleneglycol diglycidyl ether diacrylate (PPGGEA) was synthesized by utilizing polypropyleneglycol diglycidyl ether (PPGGE) and acrylic acid (AA) as starting materials, N, N-dimethylbenzylamine as catalyst and p-hydroxyanisole as inhibitor. The optimum synthetic conditions were in the following: the concentration of N, N-dimethylbenzylamine was 0.80 wt% of reactants, the concentration of p-hydroxyanisole was 0.3 wt% of reactants, the reaction temperature was 90-110 ~C, and the molar ratio of PPGGE to AA was 1:2.2. Meanwhile, 1-hydroxycyclohexyl phenyl ketone of a UV-cured initiator was added to the synthesized PPGGEA to prepare a kind of UV-cured coating. The mechanical properties of the UV-cured films were determined, giving 29.99 MPa of tensile strength, 834.27 MPa of the Young's modulus and 5.66% of elongation at tear.
基金Funded by the Natural Science Foundation of Jiangxi Province (No.2008GZC0021)the National "863" Hi-tech Foundation of China (No.2002AA6Z3083)
文摘A novel UV-curable prepolymer hexanediol diglycidyl ether diacrylate (HDGEA) was synthesized by utilizing hexanediol diglycidyl ether (HDGE) and acrylic acid (AA) as starting materials, N, N-dimethylbenzylamine as catalyst and p-hydroxyanisole as inhibitor. The optimal synthetic conditions were that the concentration of N, N-dimethylbenzylamine was 0.80 wt% of reactants, the concentration of p-hydroxyanisole was 0.3 wt% of reactants, the reaction temperature was 90-110 ℃, and the molar ratio of HDGE to AA was 1︰2.2. Meanwhile, 1-hydroxycyclohexyl phenyl ketone of a UV-curing initiator was added to the synthesized HDGEA to prepare a kind of UV-curing coating. The mechanical properties of the UV-cured films were determined, giving 31.87 MPa of tensile strength, 871.88 MPa of Young's modulus and 6.77% of elongation at tear.
基金Funded by the National Natural Science Foundation of China(No.51403082)
文摘A novel photosensitive copolymer P(SS-co-AA-g-GMA)(PSAG) was synthesized and utilized to noncovalently functionalize pristine single-walled carbon nanotubes(SCNTs). PSAG was highly effective for the solubilization of SCNTs in water and validated by UV-vis absorption spectra experiments, resulting in homogeneous and stable PSAG-SCNT aqueous dispersion. The microstructure of SCNTs was observed through Raman spectroscopy and transmission electron microscopy. In addition, compared with the two common polymeric dispersants of Triton X-100 and PSS, PSAG demonstrated more effective performances for dispersing SCNTs under identical conditions. Furthermore, the photosensitive PSAG-SCNTs can be crosslinked after UV irradiation, leading to significant improvement in the water resistance of SCNT films. UV-cured films can be transferred to plastic wrap to form a flexible film with high electrical conductivity.
基金Funded by the National Natural Science Foundation of China (50673038 and 20704017)the Innovation Foundation of Jiangsu(BY2011118)
文摘A series of photosensitive random copolymers (UPDHES) were prepared by introducing acrylate groups onto the side chain of the copolymer backbone of N, N-domethyl amimethyl methacrylate (DMAEMA), 2-hydroxypropyl acrylate (HEA), 2-ethylhexyl acrylate (EHA), and styrene (St) (PDHES). The molecular structure of UPDHES was characterized by FTIR, 1HNMR and GPC. The photopolymerization kinetics of UPDHES with different C=C content was investigated using real time FTIR in which it was found that the UPDHES system had notable photosensitivity. The effect of C=C content on the properties of cured films were studied by evaluating various film properties such as thermal stability, glass transition temperature and tensile properties. The thermal degradation of cured films was investigated via thermogravimetric analysis/infrared spectrometry (TGA-IR). Thus a series of UV-curable electrodeposition coatings with good photosensitivity and mechanical properties were prepared from a low-cost photosensitive random copolymer.
基金Natural Science Foundation of Jiangxi Province of China (No. 2008GZC0021)National High-Tech R&D Program of China(863 program) (No. 2002AA6Z3083)
文摘A novel UV-curable diluent benzyl glycidyl ether acrylate(BGEA) was synthesized by utilizing benzyl glycidyl ether(BGE) and acrylic acid(AA) as starting materials,N,N-dimethylbenzylamine as catalyst and p-hydroxyanisole as inhibitor.The optimum synthetic conditions were that the concentration of N,N-dimethylbenzylamine was 0.90% of reactants by weight,the concentration of p-hydroxyanisole was 0.20% of reactants by weight,the reaction temperature was 90-100℃,and the molar ratio of BGE to AA was 1.00:1.10.The experiment shows that BGEA is a kind of good diluent.The mechanical properties of the UV-cured films with BGEA as diluent to prepare UV-curing coating were superior to that of the UV-cured films with butyl acrylate as diluent to prepare UV-curing coating.
基金supported by the National High-Technology Research and Development Program of China (Grant No.2002AA6Z3083)
文摘A novel UV-curable prepolymer neopentyl glycol diglycidyl ether diacrylate (NPGGEA) was synthesized by using neopentyl glycol diglycidyl ether (NPGGE) and acrylic acid (AA) as starting materials, N, N-dimethylbenzylamine as catalyst and p-hydroxyanisole as inhibitor. The optimum synthetic conditions were taken as follows: The concentration of N,N-dimethylbenzylamine, 0.80% of reactants; the concentration of p-hydroxyanisole, 0.3% of reactants; the reaction temperature, 90-110 ; the molar ratio of NPGGE to AA, 1:2.2. Meanwhile, 1-hydroxycyclohexyl phenyl ketone of a UV-cured initiator was added to the synthesized NPGGEA to prepare a kind of UV-cured coating. Mechanical properties of the UV-cured films were determined, giving 28.75 MPa of tensile strength, 923.82 MPa of Young’s modulus and 5.51% of elongation at tear.
基金Equipment Development Department of China(61406190401).
文摘A new type of explosive ink formulation that can be quickly cured was prepared with unsaturated polyester as binder,styrene as active monomer,2,4,6-trimethylbenzoyl-diphenylphosphine oxide as photoinitiator,and hexanitrohexaazaisowurtzitane(CL-20)as the main explosive.Then the explosive inkdirect writing technology was used to charge the micro-sized energetic devices,the curing mechanism of the explosive ink was discussed,and the microstructure,safety performance and explosive transfer performance of the explosive ink molded samples were tested and analyzed.Results indicate that the composite material has a fast curing molding speed,its hardness can reach 2H within 8 min.The crystal form of CL-20 in the molded sample is still type.The CL-20 based UV-curing explosive ink formulation has good compatibility,its apparent activation energy is increased by about 3.5 kj/mol.The composite presents a significant reduction in impact sensitivity and its characteristic drop height can reach 39.8 cm,whichis about 3 times higher than the raw material.When the line width of charge is 1.0 mm,the critical thickness of the explosion can reach 0.015 mm,and the explosion velocity is 7129 m/s when the charge density is 1.612 g/cm^(3).
基金Project supported by Guangdong Natural Science Foundation(No. 960019)
文摘Three kinds of UV-curable self-emulsified polyurethane-acrylate (PUA) prepolymer, i.e., conventional, chain extended and grafted PUAs, were prepared. The relatively small particle size of the PUA dispersions indicates that the PUA prepolymers exhibit sufficient aqueous dispersibility. The PUA prepolymers can substantially lower the interfacial tension of water. Chain-extended PUA dispersions exhibit pseudoplastic behavior and thixotropy to a greater extent than do their conventional counterpart. The chain-extended and grafted PUA photocure to higher conversion than do the conventional PU equivalent. The results of DSC measurement suggest that there exists phase mixing between the hard and the soft segment phases for the PUAs based on PEG 400 that is the comparatively short soft segment in the prepolymer. For the PUA prepolymers based on PEG having higher M-n values, chain-extending and grafting could impede the phase separation between the hard and the soft segment domains. The adhesion, impact strength and flexibility of the photocured films were tested.
文摘Photosensitive organosilicon monomers and polymers containing furylacrylate, cinnamate or methacrylate groups were synthesized. The chemical structure of these organosilicon monomers were confirmed by 1H NMR and elemental analysis.The curing rates of these photosensitive polysiloxanes were also determined, all of them show a good UV-sensitivity. The UV-sensitivity of polysiloxanes containing pendent furylacrylates are comparable to that of polysiloxanes with either pendent cinnamate or pendent methacrylate groups.
文摘A novel photosensitive prepolymer of trimethylolpropane triglycidylether triacrylate was synthesized by utilizing trimethylolpropane triglycidylether and acrylic acid as two starting materials, triphenyl phosphine as catalyst and p-hydroxyanisole as inhibitor. The optimum synthesis conditions were that the concentration of triphenyl phosphine was 0.85wt% of reactants, the concentration of p-hydroxyanisole was 0.3wt% of reactants, and the reaction temperature was at 90-110 ℃. Benzil dimethyl ketal of a UV-cured initiator was added to the synthesized trimethylolpropane triglycidylether triacrylate to prepare a kind of UV-cured coating. The mechanical properties of the UV-cured films were determined, giving 28.43 MPa of tensile strength, 965.59MPa of (Young's) modulus and 4.10% of elongation at tear.
基金Supported by the National Natural Science Foundation of China(Nos.20606035, 20401015, 50574082)Chinese Acade-my of Sciences Project of One Hundred Talents.
文摘By the UV-curing method, a porous TiO2 film with net-like framework has been prepared. The characterization results of the porous TiO2 film by means of SEM, TEM, XRD, and N2 adsorption-desorption analysis show that the net-like framework of the porous TiO2 film is composed of TiO2 nanoparticles, forming three dimensional porous structure. The porous TiO2 film exhibits higher photocatalytic activity for the degradation of methylene blue(MB) dye compared with the conventional dense TiO2 film.
基金funded by Major Landmark Innovation Demonstration Project,2019XK2002Changsha Functional Oil Technology Innovation Center,KH2101007Hunan Forestry Bureau Outstanding Training Research Project,XLK202108-2.
文摘Tung oil(TO)/ultraviolet(UV)photo-composite curing material possesses the characteristics of low curing temperature,low material shrinkage and low environmental pollution.Accordingly,this material must be developed and utilized with the conjugated double bonds contained in the long chain of the main structure(α-tung acid)molecules in the refined TO.The aforementioned material can be chemically modified using a variety of chemical methods to develop a new TO-based UV photocurable material due to its unique chemical properties.This work reviews the research progress of TO/UV photo-composite curing materials in recent years.Firstly,the chemical structure and application of TO and UV Photocatalysis Technology were briefly introduced.Secondly,the research status of novel TO/UV photo-composite curing materials developed by the Diels-Alder reaction was discussed.The method and curing effect of the UVcuring system constructed by other chemically modified TO were also discussed.Thereafter,the application of TO in industrial production is introduced from four directions:the application of TO in biodiesel,the application in synthetic resin,the application in self-healing coating and microcapsules and other applications.Finally,the research and application prospects of TO/UV photo-composite curing materials were presented.