期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Variation and Stability Analysis of Wheat Dough Stability Time 被引量:1
1
作者 TIAN Ji-chun HU Rui-bo DENG Zhi-ying WANG Yan-xun 《Agricultural Sciences in China》 CAS CSCD 2007年第2期143-149,共7页
Farinograph dough stability time is an important index for classifying wheat, and it often indicates the most appropriate end use for the wheat cultivars. This study aimed at the problem of large fluctuations in dough... Farinograph dough stability time is an important index for classifying wheat, and it often indicates the most appropriate end use for the wheat cultivars. This study aimed at the problem of large fluctuations in dough stability time that occurs during the commercial wheat production. The variations in the dough stability time and its consistency across locations and years were analyzed using 12 principal high-quality wheat cultivars (varieties) obtained from Shandong Province, China, which were grown at nine different locations for three successive years. The results showed that the coefficient of variation for the dough stability time ranged from 24.29 to 49.60% across different varieties, locations, and years. Additive main effects and multiplicative interaction (AMMI) analysis indicated that there were significant interactions for the dough stability time between the varieties, the growth locations, and the years. The genotype effect was the most noticeable, followed by the interaction of the genotype and the environment. The environmental effect was the least significant. The interactions between the varieties and the locations differ considerably, however, each cultivar (variety) apparently has a specific adaptability to the growth location. Therefore, for the successful commercial scale production of the high-quality wheat varieties, both the selection of proper cultivars and its most suitable growth locations to meet the desired requirements for the dough mixing stability time are important. 展开更多
关键词 Chinese wheat (Ttiticum aestivum) dough stability time genotype and environment stability analysis
下载PDF
RVA and Farinograph Properties Study on Blends of Resistant Starch and Wheat Flour 被引量:17
2
作者 FU Lei TIAN Ji-chun +1 位作者 SUN Cai-ling LI Chun 《Agricultural Sciences in China》 CAS CSCD 2008年第7期812-822,共11页
Resistant starch (RS) is the undigested starch that passes through the small intestine to the large intestine. As a functional low calorie additive, it has special applications in the food industry. Rapid visco anal... Resistant starch (RS) is the undigested starch that passes through the small intestine to the large intestine. As a functional low calorie additive, it has special applications in the food industry. Rapid visco analysis (RVA) and the Brabender farinograph were used to study the pasting properties and the viscoelasticity of blends of RS (RS3 and RS2) and three wheat flours. The wheat flours represented strong gluten wheat (SGW), intermediate gluten wheat (IGW), and weak gluten wheat (WGW) flours, at different levels of RS substitution (0, 5, 10, 15, and 20%). The influence of RS3 on the control wheat flours and RS-wheat flour blends were consistent with those of RS2. The peak, trough, and final viscosities of RS3-wheat flour blends were higher than those of the corresponding RS2-wheat flour blends. The peak, trough, breakdown, final, and setback viscosities ofwheat-RS blends decreased with an increase in resistant starch contents from 0 to 20% in the blends. The 0-20% RS-wheat flour blends were all able to form doughs. The dough development times, dough stabilities, dough breakdown times, and farinograph quality numbers for the RS-wheat flour blends decreased as the RS proportion in the blends increased. The values for RS-SGW flour blends were the highest, followed by RS-IGW and then RS-WGW flour blends. The water absorption values for RS-wheat flour blends and the mixing tolerance index for RS-WGW flour blends were found to increase significantly with an increasing proportion of RS from 0 to 20%, but the mixing tolerance index for RS-SGW and RS-IGW flour blends showed no significant differences amongst the different ratios. Correlation analysis showed that the Farinograph quality number was highly positively correlated with dough breakdown time, dough stability, and dough development time (r= 1.000, 0.958, 0.894), and highly negatively correlated with the mixing tolerance index (r =-0.890). Data from this study can be used for the development of dough-based products. It also provides a basis for RS-wheat flour blends and quality evaluation in the food industry. 展开更多
关键词 resistant starch wheat flour pasting properties rapid viscosity analysis dough stability farinograph quality number
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部