The dragline is one of the most promising surface mining machines in China. This paper studies the interac-tion between the working bench advancing speed and the stripping volume with variation in coal seam thickness....The dragline is one of the most promising surface mining machines in China. This paper studies the interac-tion between the working bench advancing speed and the stripping volume with variation in coal seam thickness. Ad-justing the bulldozing volume (depth) and/or changing the dragline bench height are proposed as means to ensure a smooth and economical mining operation. When the coal seam is getting thicker it is recommended to reduce the bull-dozing volume (depth) for a higher dragline efficiency. When the coal seam is getting thinner it is recommended to in-crease the bulldozing volume (depth) to ensure the dragline can work at the proper bench height.展开更多
According to the characteristics of opencast coal resources and dragline technology system application in China,the structure and shifting step of transport passage are optimized in this paper.Typical coal transport p...According to the characteristics of opencast coal resources and dragline technology system application in China,the structure and shifting step of transport passage are optimized in this paper.Typical coal transport passage is analyzed in aspects such as the internal dump occupation,dragline operation efficiency,coal transport distance,upper stripping distance and shifting quantities.The middle passage should be given priority in thick overburden open pit mine because the dragline system is only responsible for part stripping task.According to characteristics of middle passage,the transport passage is divided into parallel climbing,vertical climbing and horizontal transport.In addition,the transport passage structure optimization model and shifting distance optimization model are established in this paper.The case study in Heidaigou open pit mine shows that,the parallel climbing height is accounted for about 60%of the total height,and reasonable shifting distances of the first mining area and the second mining area are 240 and 320 m.Sensitivity analysis shows that,the total passage height has important influence on the shifting step,so it is with the stripping height and passage construction cost to the passage structure.展开更多
Dragline spider silks have relatively high mass-based mechanical properties (tensile strength, elongation to break and rupture energy) and are environmentally responsive (supercontraction). In order to produce new syn...Dragline spider silks have relatively high mass-based mechanical properties (tensile strength, elongation to break and rupture energy) and are environmentally responsive (supercontraction). In order to produce new synthetic fibers with these properties, many research groups have focused on identifying the chemical composition of these fibers and the structure of the fiber core. Since each fiber also has an outer skin, our study will provide a detailed understanding of the silk surface morphology, the response of the surface morphology to environmental conditions and processing variables, and also determine if the silk surface has a definitive patterning of charged amino acids. Specifically, by using force microscopy and functionalized nanoparticles, the present study examines 1) how the silk surface (topography, average roughness) is altered due to prior mechanical loading (viz. reeling speed), 2) alterations in morphology due to environmental conditions (supercontraction, storage time), and 3) the negatively and positively charged regions along with the surface using both force and nanoparticle mapping. Roughness data taken on dragline silk collected from Nephila clavipes spiders revealed that the surface comprised both smooth (5 nm RMS) and rough (65 nm RMS) regions. Supercontracted silk (from immersion in0.01 MPBS during AFM testing) showed higher surface roughness values compared to spider silk tested in the air, indicating that the surface might be reorganized during supercontraction. No correlation was found between surface roughness and neither collection speed nor aging time for the as-spun or supercontracted fiber, demonstrating the surface stability of the dragline silk over time in terms of roughness. Both the force microscopy and the nanoparticle methods suggested that the density of negatively charged amino acids (glutamic acid, aspartic acid) was higher than that of the positively charged amino acids (lysine, asparagine, and histidine).展开更多
Dragline excavators are closed-loop mining manipulators that operate using a rigid multilink framework and rope and rigging system,which constitute its front-end assembly.The arrangements of dragline front-end assembl...Dragline excavators are closed-loop mining manipulators that operate using a rigid multilink framework and rope and rigging system,which constitute its front-end assembly.The arrangements of dragline front-end assembly provide the necessary motion of the dragline bucket within its operating radius.The assembly resembles a five-link closed kinematic chain that has two independent generalized coordinates of drag and hoist ropes and one dependent generalized coordinate of dump rope.Previous models failed to represent the actual closed loop of dragline front-end assembly,nor did they describe the maneuverability of dragline ropes under imposed geometric constraints.Therefore,a three degrees of freedom kinematic model of the dragline front-end is developed using the concept of generalized speeds.It contains all relevant configuration and kinematic constraint conditions to perform complete digging and swinging cycles.The model also uses three inputs of hoist and drag ropes linear and a rotational displacement of swinging along their trajectories.The inverse kinematics is resolved using a feedforward displacement algorithm coupled with the Newton-Raphson method to accurately estimate the trajectories of the ropes.The trajectories are solved only during the digging phase and the singularity was eliminated using Baumgarte's stabilization technique(BST),with appropriate inequality constraint equations.It is shown that the feedforward displacement algorithm can produce accurate trajectories without the need to manually solve the inverse kinematics from the geometry.The research findings are well in agreement with the dragline real operational limits and they contribute to the efficiency and the reduction in machine downtime due to better control strategies of the dragline cycles.展开更多
The blasting operation plays a pivotal role in the overall economics of opencast mines.The blasting subsystem affects all the other associated sub-systems,i.e.loading,transport,crushing and milling operations.Fragment...The blasting operation plays a pivotal role in the overall economics of opencast mines.The blasting subsystem affects all the other associated sub-systems,i.e.loading,transport,crushing and milling operations.Fragmentation control through effective blast design and its effect on productivity are the challenging tasks for practicing blasting engineer due to inadequate knowledge of actual explosive energy released in the borehole,varying initiation practice in blast design and its effect on explosive energy release characteristic.This paper describes the result of a systematic study on the impact of blast design parameters on rock fragmentation at three mines in India.The mines use draglines and shoveledumper combination for removal of overburden.Despite its pivotal role in controlling the overall economics of a mining operation,the expected blasting performance is often judged almost exclusively on the basis of poorly defined parameters such as powder factor and is often qualitative which results in very subjective assessment of blasting performance.Such an approach is very poor substitutes for accurate assessment of explosive and blasting performance.Ninety one blasts were conducted with varying blast designs and charging patterns,and their impacts on the rock fragmentation were documented.A high-speed camera was deployed to record the detonation sequences of the blasts.The efficiency of the loading machines was also correlated with the mean fragment size obtained from the fragmentation analyses.展开更多
基金Projects 50474069 supported by the National Natural Science Foundation of China2006BAB16B00 by the State Scientific and Technological Project of the 11th Five-Year Plan
文摘The dragline is one of the most promising surface mining machines in China. This paper studies the interac-tion between the working bench advancing speed and the stripping volume with variation in coal seam thickness. Ad-justing the bulldozing volume (depth) and/or changing the dragline bench height are proposed as means to ensure a smooth and economical mining operation. When the coal seam is getting thicker it is recommended to reduce the bull-dozing volume (depth) for a higher dragline efficiency. When the coal seam is getting thinner it is recommended to in-crease the bulldozing volume (depth) to ensure the dragline can work at the proper bench height.
基金Financial support from the National High-Tech Research and Development Program of China(No.2012AA062004)the National Natural Science Foundation of China(No.51034005)
文摘According to the characteristics of opencast coal resources and dragline technology system application in China,the structure and shifting step of transport passage are optimized in this paper.Typical coal transport passage is analyzed in aspects such as the internal dump occupation,dragline operation efficiency,coal transport distance,upper stripping distance and shifting quantities.The middle passage should be given priority in thick overburden open pit mine because the dragline system is only responsible for part stripping task.According to characteristics of middle passage,the transport passage is divided into parallel climbing,vertical climbing and horizontal transport.In addition,the transport passage structure optimization model and shifting distance optimization model are established in this paper.The case study in Heidaigou open pit mine shows that,the parallel climbing height is accounted for about 60%of the total height,and reasonable shifting distances of the first mining area and the second mining area are 240 and 320 m.Sensitivity analysis shows that,the total passage height has important influence on the shifting step,so it is with the stripping height and passage construction cost to the passage structure.
文摘Dragline spider silks have relatively high mass-based mechanical properties (tensile strength, elongation to break and rupture energy) and are environmentally responsive (supercontraction). In order to produce new synthetic fibers with these properties, many research groups have focused on identifying the chemical composition of these fibers and the structure of the fiber core. Since each fiber also has an outer skin, our study will provide a detailed understanding of the silk surface morphology, the response of the surface morphology to environmental conditions and processing variables, and also determine if the silk surface has a definitive patterning of charged amino acids. Specifically, by using force microscopy and functionalized nanoparticles, the present study examines 1) how the silk surface (topography, average roughness) is altered due to prior mechanical loading (viz. reeling speed), 2) alterations in morphology due to environmental conditions (supercontraction, storage time), and 3) the negatively and positively charged regions along with the surface using both force and nanoparticle mapping. Roughness data taken on dragline silk collected from Nephila clavipes spiders revealed that the surface comprised both smooth (5 nm RMS) and rough (65 nm RMS) regions. Supercontracted silk (from immersion in0.01 MPBS during AFM testing) showed higher surface roughness values compared to spider silk tested in the air, indicating that the surface might be reorganized during supercontraction. No correlation was found between surface roughness and neither collection speed nor aging time for the as-spun or supercontracted fiber, demonstrating the surface stability of the dragline silk over time in terms of roughness. Both the force microscopy and the nanoparticle methods suggested that the density of negatively charged amino acids (glutamic acid, aspartic acid) was higher than that of the positively charged amino acids (lysine, asparagine, and histidine).
基金The funding from the Robert H.Quenon Endowment at Missouri S&T for this research is also greatly acknowledged.
文摘Dragline excavators are closed-loop mining manipulators that operate using a rigid multilink framework and rope and rigging system,which constitute its front-end assembly.The arrangements of dragline front-end assembly provide the necessary motion of the dragline bucket within its operating radius.The assembly resembles a five-link closed kinematic chain that has two independent generalized coordinates of drag and hoist ropes and one dependent generalized coordinate of dump rope.Previous models failed to represent the actual closed loop of dragline front-end assembly,nor did they describe the maneuverability of dragline ropes under imposed geometric constraints.Therefore,a three degrees of freedom kinematic model of the dragline front-end is developed using the concept of generalized speeds.It contains all relevant configuration and kinematic constraint conditions to perform complete digging and swinging cycles.The model also uses three inputs of hoist and drag ropes linear and a rotational displacement of swinging along their trajectories.The inverse kinematics is resolved using a feedforward displacement algorithm coupled with the Newton-Raphson method to accurately estimate the trajectories of the ropes.The trajectories are solved only during the digging phase and the singularity was eliminated using Baumgarte's stabilization technique(BST),with appropriate inequality constraint equations.It is shown that the feedforward displacement algorithm can produce accurate trajectories without the need to manually solve the inverse kinematics from the geometry.The research findings are well in agreement with the dragline real operational limits and they contribute to the efficiency and the reduction in machine downtime due to better control strategies of the dragline cycles.
基金The financial support from Coal S&T grant of Ministry of Coal,Government of India
文摘The blasting operation plays a pivotal role in the overall economics of opencast mines.The blasting subsystem affects all the other associated sub-systems,i.e.loading,transport,crushing and milling operations.Fragmentation control through effective blast design and its effect on productivity are the challenging tasks for practicing blasting engineer due to inadequate knowledge of actual explosive energy released in the borehole,varying initiation practice in blast design and its effect on explosive energy release characteristic.This paper describes the result of a systematic study on the impact of blast design parameters on rock fragmentation at three mines in India.The mines use draglines and shoveledumper combination for removal of overburden.Despite its pivotal role in controlling the overall economics of a mining operation,the expected blasting performance is often judged almost exclusively on the basis of poorly defined parameters such as powder factor and is often qualitative which results in very subjective assessment of blasting performance.Such an approach is very poor substitutes for accurate assessment of explosive and blasting performance.Ninety one blasts were conducted with varying blast designs and charging patterns,and their impacts on the rock fragmentation were documented.A high-speed camera was deployed to record the detonation sequences of the blasts.The efficiency of the loading machines was also correlated with the mean fragment size obtained from the fragmentation analyses.