The efficient exploration and development of unconventional oil and gas are critical for increasing the self-sufficiency of oil and gas supplies in China.However,such operations continue to face serious problems(e.g.,...The efficient exploration and development of unconventional oil and gas are critical for increasing the self-sufficiency of oil and gas supplies in China.However,such operations continue to face serious problems(e.g.,borehole collapse,loss,and high friction),and associated formation damage can severely impact well completion rates,increase costs,and reduce efficiencies.Water-based drilling fluids possess certain advantages over oil-based drilling fluids(OBDFs)and may offer lasting solutions to resolve the aforementioned issues.However,a significant breakthrough with this material has not yet been made,and major technical problems continue to hinder the economic and large-scale development of unconventional oil and gas.Here,the international frontier external method,which only improves drilling fluid inhibition and lubricity,is expanded into an internal-external technique that improves the overall wellbore quality during drilling.Bionic technologies are introduced into the chemical material synthesis process to imitate the activity of life.A novel drilling and completion fluid technique was developed to improve wellbore quality during drilling and safeguard formation integrity.Macroscopic and microscopic analyses indicated that in terms of wellbore stability,lubricity,and formation protection,this approach could outperform methods that use typical OBDFs.The proposed method also achieves a classification upgrade from environmentally protective drilling fluid to an ecologically friendly drilling fluid.The developed technology was verified in more than 1000 unconventional oil and gas wells in China,and the results indicate significant alleviation of the formation damage attributed to borehole collapse,loss,and high friction.It has been recognized as an effective core technology for exploiting unconventional oil and gas resources.This study introduces a novel research direction for formation protection technology and demonstrates that observations and learning from the natural world can provide an inexhaustible source of ideas and inspire the creation of original materials,technologies,and theories for petroleum engineering.展开更多
The application of artificial intelligence(AI)has become inevitable in the petroleum industry.In drilling and completion engineering,AI is regarded as a transformative technology that can lower costs and significantly...The application of artificial intelligence(AI)has become inevitable in the petroleum industry.In drilling and completion engineering,AI is regarded as a transformative technology that can lower costs and significantly improve drilling efficiency(DE),In recent years,numerous studies have focused on intelligent algorithms and their application.Advanced technologies,such as digital twins and physics-guided neural networks,are expected to play roles in drilling and completion engineering.However,many challenges remain to be addressed,such as the automatic processing of multi-source and multi-scale data.Additionally,in intelligent drilling and completion,methods for the fusion of data-driven and physicsbased models,few-sample learning,uncertainty modeling,and the interpretability and transferability of intelligent algorithms are research frontiers.Based on intelligent application scenarios,this study comprehensively reviews the research status of intelligent drilling and completion and discusses key research areas in the future.This study aims to enhance the berthing of AI techniques in drilling and completion engineering.展开更多
This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include o...This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include operating load during drilling and completion and the temperature field,pressure field and the end effect of pressure during gas production.The finite element method for multistring analysis is developed to simulate random contact between casings.The relevant finite element analysis scheme is also presented according to the actual procedures of drilling,completion and gas production.Finally,field cases are presented and analyzed using the proposed methods.These are four offshore wells in the South China Sea.The calculated wellhead growths during gas production are compared with measured values.The results show that the wellhead subsides during drilling and completion and grows up during gas production.The theoretical and finite element solutions for wellhead growth are in good agreement with measured values and the deviations of calculation are within 10%.The maximum von Mises stress on the uncemented intermediate casing occurs during the running of the oil tube.The maximum von Mises stress on the uncemented production casing,calculated with the theoretical method occurs at removing the blow-out-preventer (BOP) while that calculated with the finite element method occurs at gas production.Finite element solutions for von Mises stress are recommended and the uncemented casings of four wells satisfy strength requirements.展开更多
Aiming at the actual demands of petroleum exploration and development,this paper describes the research progress and application of artificial intelligence(AI)in petroleum exploration and development,and discusses the...Aiming at the actual demands of petroleum exploration and development,this paper describes the research progress and application of artificial intelligence(AI)in petroleum exploration and development,and discusses the applications and development directions of AI in the future.Machine learning has been preliminarily applied in lithology identification,logging curve reconstruction,reservoir parameter estimation,and other logging processing and interpretation,exhibiting great potential.Computer vision is effective in picking of seismic first breaks,fault identification,and other seismic processing and interpretation.Deep learning and optimization technology have been applied to reservoir engineering,and realized the real-time optimization of waterflooding development and prediction of oil and gas production.The application of data mining in drilling,completion,and surface facility engineering etc.has resulted in intelligent equipment and integrated software.The potential development directions of artificial intelligence in petroleum exploration and development are intelligent production equipment,automatic processing and interpretation,and professional software platform.The highlights of development will be digital basins,fast intelligent imaging logging tools,intelligent seismic nodal acquisition systems,intelligent rotary-steering drilling,intelligent fracturing technology and equipment,real-time monitoring and control of zonal injection and production.展开更多
Ultra-deep formations hold abundant oil and gas resources.As the demand for oil and gas increases with economic development,more and more efforts are putting into the exploration and development of oil and gas reservo...Ultra-deep formations hold abundant oil and gas resources.As the demand for oil and gas increases with economic development,more and more efforts are putting into the exploration and development of oil and gas reservoirs in deep formations around the world.In China,the exploration and development of deep oil and gas are pacing up,especially in ultra-deep formations in the Sichuan Basin,Tarim Basin and Ordos Basin.The reservoirs in these basins feature extremely large depth(over 7000 m),super high temperature(150°C-210°C),super high pressure(over 150 MPa),high acid gas content(H_2S and CO_2),strong heterogeneity,and multiple pressure systems,which pose a series of challenges to wellbore engineering technologies including drilling,drilling fluid,cementing,logging,and completion testing.Therefore,it is necessary to delve into core drilling and testing technologies for deep formations.展开更多
Although shale gas resources are abundant in China,commercial discoveries have not been made before the discovery of Fuling Shale Gas Field.SINOPEC has done lots of theoretical and technological studies on marine shal...Although shale gas resources are abundant in China,commercial discoveries have not been made before the discovery of Fuling Shale Gas Field.SINOPEC has done lots of theoretical and technological studies on marine shale gas development in China.Research shows shale gas has dynamic accumulations with early preservation and late reconstruction and proposes high-quality shale developed in deep-water shelf as the base and good preservation conditions as the key factor for shale gas accumulation.Key technologies and facilities were developed for geophysical survey of shale gas,design and optimization of shale gas development,drilling and completion of horizontal wells,and fracturing stimulation.As the first and largest shale gas field in China,the discovery and successful development of Fuling Shale Gas Filed has made China the first country to achieve large-scale development of shale gas after North America.By August 2017,Fuling Shale Gas Field had declared 6008.14×10^(8)m^(3) proven reserves,76.8×10^(8)m^(3) production capacity and 133.9×10^(8)m^(3) cumulative production.The construction of Fuling Shale Gas Field with high level,high speed and high quality has been a good example of shale gas development in China.Its successful experiences can be used to other fields and play an important role in optimizing energy structure and improving environment.展开更多
基金supported by the National Natural Science Foundation of China Youth Science Fund Project(52004297)China Postdoctoral Innovative Talent Support Program(BX20200384)。
文摘The efficient exploration and development of unconventional oil and gas are critical for increasing the self-sufficiency of oil and gas supplies in China.However,such operations continue to face serious problems(e.g.,borehole collapse,loss,and high friction),and associated formation damage can severely impact well completion rates,increase costs,and reduce efficiencies.Water-based drilling fluids possess certain advantages over oil-based drilling fluids(OBDFs)and may offer lasting solutions to resolve the aforementioned issues.However,a significant breakthrough with this material has not yet been made,and major technical problems continue to hinder the economic and large-scale development of unconventional oil and gas.Here,the international frontier external method,which only improves drilling fluid inhibition and lubricity,is expanded into an internal-external technique that improves the overall wellbore quality during drilling.Bionic technologies are introduced into the chemical material synthesis process to imitate the activity of life.A novel drilling and completion fluid technique was developed to improve wellbore quality during drilling and safeguard formation integrity.Macroscopic and microscopic analyses indicated that in terms of wellbore stability,lubricity,and formation protection,this approach could outperform methods that use typical OBDFs.The proposed method also achieves a classification upgrade from environmentally protective drilling fluid to an ecologically friendly drilling fluid.The developed technology was verified in more than 1000 unconventional oil and gas wells in China,and the results indicate significant alleviation of the formation damage attributed to borehole collapse,loss,and high friction.It has been recognized as an effective core technology for exploiting unconventional oil and gas resources.This study introduces a novel research direction for formation protection technology and demonstrates that observations and learning from the natural world can provide an inexhaustible source of ideas and inspire the creation of original materials,technologies,and theories for petroleum engineering.
基金support of the National Key Research and Development Project of China(2019YFA0708300)National Science Fund for Distinguished Young Scholars of China(52125401)National Natural Science Foundation of China(L1924060)。
文摘The application of artificial intelligence(AI)has become inevitable in the petroleum industry.In drilling and completion engineering,AI is regarded as a transformative technology that can lower costs and significantly improve drilling efficiency(DE),In recent years,numerous studies have focused on intelligent algorithms and their application.Advanced technologies,such as digital twins and physics-guided neural networks,are expected to play roles in drilling and completion engineering.However,many challenges remain to be addressed,such as the automatic processing of multi-source and multi-scale data.Additionally,in intelligent drilling and completion,methods for the fusion of data-driven and physicsbased models,few-sample learning,uncertainty modeling,and the interpretability and transferability of intelligent algorithms are research frontiers.Based on intelligent application scenarios,this study comprehensively reviews the research status of intelligent drilling and completion and discusses key research areas in the future.This study aims to enhance the berthing of AI techniques in drilling and completion engineering.
基金financial support from the National Key Sci-Tech Major Special Item(No.2011ZX05026-001)Program for Changjiang Scholars and Innovative Research Team in University(IRT1086)
文摘This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include operating load during drilling and completion and the temperature field,pressure field and the end effect of pressure during gas production.The finite element method for multistring analysis is developed to simulate random contact between casings.The relevant finite element analysis scheme is also presented according to the actual procedures of drilling,completion and gas production.Finally,field cases are presented and analyzed using the proposed methods.These are four offshore wells in the South China Sea.The calculated wellhead growths during gas production are compared with measured values.The results show that the wellhead subsides during drilling and completion and grows up during gas production.The theoretical and finite element solutions for wellhead growth are in good agreement with measured values and the deviations of calculation are within 10%.The maximum von Mises stress on the uncemented intermediate casing occurs during the running of the oil tube.The maximum von Mises stress on the uncemented production casing,calculated with the theoretical method occurs at removing the blow-out-preventer (BOP) while that calculated with the finite element method occurs at gas production.Finite element solutions for von Mises stress are recommended and the uncemented casings of four wells satisfy strength requirements.
基金Supported by the National Natural Science Foundation of China (72088101)。
文摘Aiming at the actual demands of petroleum exploration and development,this paper describes the research progress and application of artificial intelligence(AI)in petroleum exploration and development,and discusses the applications and development directions of AI in the future.Machine learning has been preliminarily applied in lithology identification,logging curve reconstruction,reservoir parameter estimation,and other logging processing and interpretation,exhibiting great potential.Computer vision is effective in picking of seismic first breaks,fault identification,and other seismic processing and interpretation.Deep learning and optimization technology have been applied to reservoir engineering,and realized the real-time optimization of waterflooding development and prediction of oil and gas production.The application of data mining in drilling,completion,and surface facility engineering etc.has resulted in intelligent equipment and integrated software.The potential development directions of artificial intelligence in petroleum exploration and development are intelligent production equipment,automatic processing and interpretation,and professional software platform.The highlights of development will be digital basins,fast intelligent imaging logging tools,intelligent seismic nodal acquisition systems,intelligent rotary-steering drilling,intelligent fracturing technology and equipment,real-time monitoring and control of zonal injection and production.
文摘Ultra-deep formations hold abundant oil and gas resources.As the demand for oil and gas increases with economic development,more and more efforts are putting into the exploration and development of oil and gas reservoirs in deep formations around the world.In China,the exploration and development of deep oil and gas are pacing up,especially in ultra-deep formations in the Sichuan Basin,Tarim Basin and Ordos Basin.The reservoirs in these basins feature extremely large depth(over 7000 m),super high temperature(150°C-210°C),super high pressure(over 150 MPa),high acid gas content(H_2S and CO_2),strong heterogeneity,and multiple pressure systems,which pose a series of challenges to wellbore engineering technologies including drilling,drilling fluid,cementing,logging,and completion testing.Therefore,it is necessary to delve into core drilling and testing technologies for deep formations.
基金The work was supported by the National Science and Technology Major Project of China(No.2016ZX05060).
文摘Although shale gas resources are abundant in China,commercial discoveries have not been made before the discovery of Fuling Shale Gas Field.SINOPEC has done lots of theoretical and technological studies on marine shale gas development in China.Research shows shale gas has dynamic accumulations with early preservation and late reconstruction and proposes high-quality shale developed in deep-water shelf as the base and good preservation conditions as the key factor for shale gas accumulation.Key technologies and facilities were developed for geophysical survey of shale gas,design and optimization of shale gas development,drilling and completion of horizontal wells,and fracturing stimulation.As the first and largest shale gas field in China,the discovery and successful development of Fuling Shale Gas Filed has made China the first country to achieve large-scale development of shale gas after North America.By August 2017,Fuling Shale Gas Field had declared 6008.14×10^(8)m^(3) proven reserves,76.8×10^(8)m^(3) production capacity and 133.9×10^(8)m^(3) cumulative production.The construction of Fuling Shale Gas Field with high level,high speed and high quality has been a good example of shale gas development in China.Its successful experiences can be used to other fields and play an important role in optimizing energy structure and improving environment.