期刊文献+
共找到516,614篇文章
< 1 2 250 >
每页显示 20 50 100
Contribution of mechanical forces to structural synaptic plasticity:insights from 3D cellular motility mechanisms
1
作者 Rita O.Teodoro Mafalda Ribeiro Ramos Lara Carvalho 《Neural Regeneration Research》 SCIE CAS 2025年第7期1995-1996,共2页
Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi... Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024). 展开更多
关键词 PLASTICITY STRUCTURAL mechanismS
下载PDF
Decoding molecular mechanisms:brain aging and Alzheimer's disease
2
作者 Mahnoor Hayat Rafay Ali Syed +9 位作者 Hammad Qaiser Mohammad Uzair Khalid Al-Regaiey Roaa Khallaf Lubna Abdullah Mohammed Albassam Imdad Kaleem Xueyi Wang Ran Wang Mehwish SBhatti Shahid Bashir 《Neural Regeneration Research》 SCIE CAS 2025年第8期2279-2299,共21页
The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions a... The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease. 展开更多
关键词 Alzheimer’s disease brain aging cognitive health DEMENTIA molecular mechanisms neuronal activity NEUROPLASTICITY NEUROTRANSMISSION
下载PDF
Pyroptosis,ferroptosis,and autophagy in spinal cord injury:regulatory mechanisms and therapeutic targets
3
作者 Qingcong Zheng Du Wang +1 位作者 Rongjie Lin Weihong Xu 《Neural Regeneration Research》 SCIE CAS 2025年第10期2787-2806,共20页
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne... Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury. 展开更多
关键词 AUTOPHAGY cell death ferroptosis INFLAMMATION pathological mechanisms PYROPTOSIS regulated cell death regulatory pathways spinal cord injury therapeutic targets
下载PDF
Mechanism of Salt Migration Driven by Tectonic Processes:Insights from Physical and Numerical Modeling 被引量:2
4
作者 YIN Hongwei ZHENG Mianping +2 位作者 ZHANG Zhen WU Zhenyun WANG Xingyuan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第S1期273-274,共2页
1 Introduction Physical and numerical models are constructed to investigate the evolution and mechanism of salt migration driven by tectonic processes.In recent years,we have designed and ran series of models to simul... 1 Introduction Physical and numerical models are constructed to investigate the evolution and mechanism of salt migration driven by tectonic processes.In recent years,we have designed and ran series of models to simulate salt 展开更多
关键词 In mechanism of Salt Migration driven by Tectonic Processes
下载PDF
Type Synthesis of fully-Decoupled 2T2R Parallel Mechanisms Based on Driven - Chain Principle 被引量:1
5
作者 Yi Cao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第5期45-52,共8页
Based on the screw theory and the driven-chain principle,a methodology of structural synthesis for fully-decoupled two-translational(2T) and two-rotational(2R) parallel mechanism is proposed by analyzing the character... Based on the screw theory and the driven-chain principle,a methodology of structural synthesis for fully-decoupled two-translational(2T) and two-rotational(2R) parallel mechanism is proposed by analyzing the characteristics of the input-output relations for fully-decoupled parallel mechanisms.Firstly,according to the desired kinematic characteristics of fully-decoupled parallel mechanisms,a method is proposed by virtue of screw theory to synthesize the desired forms for both the direct and the inverse Jacobian matrices.Secondly,according to the feature of the direct and the inverse Jacobian matrices,the effective screws,the actuated screws and the mobile un-actuated screws of each leg are established based on the reciprocal screw theory and all possible topology structures fulfilling the requirements are obtained.Finally,the desired fully-decoupled parallel mechanisms can be synthesized by using the structural synthesis rule and structural synthesis of fullydecoupled 2T2R parallel mechanisms can be obtained exploiting the abovementioned methodology.In particular,the direct Jacobian matrix of each synthesized fully-decoupled 2T2R parallel mechanism is a non-zero diagonal matrix throughout the entire workspace.Motors are mounted on each leg and each one of them actuates one degree-of-freedom(Do F) of the fully-decoupled parallel mechanism through a one-to-one velocity relation. 展开更多
关键词 type synthesis fully-decoupled parallel mechanisms driven-chanin principle screw theory
下载PDF
Rotation Control of a 3-DOF Parallel Mechanism Driven by Pneumatic Muscle Actuators 被引量:2
6
作者 LIU Kai CHEN Yining +3 位作者 WU Yang XU Jiaqi WANG Yangwei GE Zhishang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第2期330-338,共9页
The pneumatic muscle actuator(PMA)has many advantages,such as good flexibility,high power/weight ratio,but its nonlinearity makes it difficult to build a static mathematical model with high precision.A new method is p... The pneumatic muscle actuator(PMA)has many advantages,such as good flexibility,high power/weight ratio,but its nonlinearity makes it difficult to build a static mathematical model with high precision.A new method is proposed to establish the model of PMA.The concept of hybrid elastic modulus which is related to the static characteristic of PMA is put forward,and the energy conservation law is used to achieve the expression of the hybrid elastic modulus,which can be fitted out based on experimental data,and the model of PMA can be derived from this expression.At the same time,a 3-DOF parallel mechanism(a new bionic shoulder joint)driven by five PMAs is designed.This bionic shoulder joint adopts the structure of two antagonistic PMAs actualizing a rotation control and three PMAs controlling another two rotations to get better rotation characteristics.The kinematic and dynamic characteristics of the mechanism are analyzed and a new static model of PMA is used to control it.Experimental results demonstrate the effectiveness of this new static model. 展开更多
关键词 PNEUMATIC MUSCLE ACTUATOR static mathematical model hybrid elastic MODULUS 3-DOF parallel mechanism
下载PDF
Dynamic Analysis of Propulsion Mechanism Directly Driven by Wave Energy for Marine Mobile Buoy 被引量:8
7
作者 YU Zhenjiang ZHENG Zhongqiang +1 位作者 YANG Xiaoguang CHANG Zongyu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期710-715,共6页
Marine mobile buoy(MMB) have many potential applications in the maritime industry and ocean science.Great progress has been made,however the technology in this area is far from maturity in theory and faced with many... Marine mobile buoy(MMB) have many potential applications in the maritime industry and ocean science.Great progress has been made,however the technology in this area is far from maturity in theory and faced with many difficulties in application.A dynamic model of the propulsion mechanism is very necessary for optimizing the parameters of the MMB,especially with consideration of hydrodynamic force.The principle of wave-driven propulsion mechanism is briefly introduced.To set a theory foundation for study on the MMB,a dynamic model of the propulsion mechanism of the MMB is obtained.The responses of the motion of the platform and the hydrofoil are obtained by using a numerical integration method to solve the ordinary differential equations.A simplified form of the motion equations is reached by omitting terms with high order small values.The relationship among the heave motion of the buoy,stiffness of the elastic components,and the forward speed can be obtained by using these simplified equations.The dynamic analysis show the following:The angle of displacement of foil is fairly small with the biggest value around 0.3 rad;The speed of mobile buoy and the angle of hydrofoil increased gradually with the increase of heave motion of buoy;The relationship among heaven motion,stiffness and attack angle is that heave motion leads to the angle change of foil whereas the item of speed or push function is determined by vertical velocity and angle,therefore,the heave motion and stiffness can affect the motion of buoy significantly if the size of hydrofoil is kept constant.The proposed model is provided to optimize the parameters of the MMB and a foundation is laid for improving the performance of the MMB. 展开更多
关键词 propulsion mechanism marine mobile buoy dynamic model hydrodynamics Morision's equation
下载PDF
HIT prosthetic hand based on tendon-driven mechanism 被引量:4
8
作者 刘伊威 丰飞 高一夫 《Journal of Central South University》 SCIE EI CAS 2014年第5期1778-1791,共14页
An underactuated finger structure actuated by tendon-driven system is presented.Kinematics and static analysis of the finger is done,and the results indicate that the prosthetic finger structure is effective and feasi... An underactuated finger structure actuated by tendon-driven system is presented.Kinematics and static analysis of the finger is done,and the results indicate that the prosthetic finger structure is effective and feasible.Based on the design of finger,a prosthetic hand is designed.The hand is composed of 5 independent fingers and it looks more like humanoid.Its size is about 85% of an adult's hand and weights about 350 g.Except the thumb finger,each finger is actuated by one DC motor,gear head and a tendon,and has three curling/extension joints.The thumb finger which is different from other existing prostheses is a novel design scheme.The thumb finger has four joints including three curling/extension joints and a joint which is used to realize the motion of the thumb related to the palm,and these joints are also driven by one DC motor,harmonic drive and a tendon.The underactuation and adaptive curling/extension motion of the finger are realized by joint torsion springs.A high-powered chip of digital signal processing(DSP)is the main part of the electrical system which is used for the motors control,data collection,communication with external controlling source,and so on.To improve the reliability of the hand,structures and sensors are designed and made as simply as possible.The hand has strong manipulation capabilities that have been verified by finger motion and grasping tests and it can satisfy the daily operational needs and psychological needs of deformities. 展开更多
关键词 prosthetic hand tendon-driven mechanism underactuation kinematics and static analysis
下载PDF
Rate-Dependent Hysteresis Modeling and Compensation of Piezo-Driven Flexure-Based Mechanism 被引量:2
9
作者 秦岩丁 高卫国 张大卫 《Transactions of Tianjin University》 EI CAS 2012年第3期157-167,共11页
Updating parameters according to the driving rate of input, the rate-dependent Prandtl-Ishlinskii (PI) model is widely used in hysteresis modeling and compensation. In order to improve the modeling accuracy, two PI ... Updating parameters according to the driving rate of input, the rate-dependent Prandtl-Ishlinskii (PI) model is widely used in hysteresis modeling and compensation. In order to improve the modeling accuracy, two PI models identified at low and high driving rates separately are incorporated through a combination law. For the piezo- driven flexure-based mechanism, the very low damping ratio makes it easy to excite the structural vibration. As a re- suit, the measured hysteresis loop is greatly distorted and the modeling accuracy of the identified P1 model is signifi- cantly affected. In this paper, a novel time-efficient parameter identification method which utilizes the superimposed sinusoidal signals as the control input is proposed. This method effectively avoids the excitation of the structural vibra- tion. In addition, as the driving rate of the superimposed sinusoidal signals covers a wide range, all the coefficients required for modeling the rate-dependence can be identified through only one set of experimental data. Hysteresis modeling and trajectory tracking experiments were performed on a 2-DOF piezo-driven flexure-based mechanism. The experimental results show that the combined hysteresis model maintains the modeling accuracy over the entire work- ing range of the flexure-based mechanism. The mechanism's hysteresis is significantly suppressed by the use of the inverse PI model as the feedforward controller; and better result is achieved when a feedback loop is also incorporated. The tracking performance of the flexure-based mechanism is greatly improved. 展开更多
关键词 hysteresis modeling rate-dependence piezoelectric actuator flexure-based mechanism
下载PDF
Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model 被引量:1
10
作者 Peng-Fei Fang Han Liu +1 位作者 Cheng-Mao Wu Min Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期175-190,共16页
An image encryption algorithm is proposed in this paper based on a new four-dimensional hyperchaotic system,a neural mechanism,a Galois field and an improved Feistel block structure,which improves the efficiency and e... An image encryption algorithm is proposed in this paper based on a new four-dimensional hyperchaotic system,a neural mechanism,a Galois field and an improved Feistel block structure,which improves the efficiency and enhances the security of the encryption algorithm.Firstly,a four-dimensional hyperchaotic system with a large key space and chaotic dynamics performance is proposed and combined with a cloud model,in which a more complex and random sequence is constructed as the key stream,and the problem of chaotic periodicity is solved.Then,the key stream is combined with the neural mechanism,Galois field and improved Feistel block structure to scramble and diffuse the image encryption.Finally,the experimental results and security analysis show that the encryption algorithm has a good encryption effect and high encryption efficiency,is secure,and can meet the requirements of practical applications. 展开更多
关键词 image encryption neural mechanism hyperchaotic system
下载PDF
Conclusions in Theory and Practice for Advancing the Applications of Cable-Driven Mechanisms 被引量:3
11
作者 Bin Zi Yuan Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第4期763-765,共3页
The theoretical research of cable-driven mechanisms is developed with its broad applications. The first prototype of cable-driven mechanisms is RoboCrane, which was developed by the National Institute of Standards and... The theoretical research of cable-driven mechanisms is developed with its broad applications. The first prototype of cable-driven mechanisms is RoboCrane, which was developed by the National Institute of Standards and Technology (NIST). Then many excellent properties were developed and they have a variety of applications such as aerospace, aircraft and automobile industries [1]. Example application for RoboCrane in the field of aircraft mainte- nance is equipped with a quick-change mechanism to remove the robot arm remotely. 展开更多
关键词 In MORE Conclusions in Theory and Practice for Advancing the Applications of Cable-driven mechanisms
下载PDF
Coupling dynamic equations of motor-driven elastic linkage mechanism with links fabricated from three-dimensional braided composite materials 被引量:2
12
作者 蔡敢为 王湘 +3 位作者 王汝贵 李兆军 张晓斌 常平平 《Journal of Central South University of Technology》 2005年第2期171-175,共5页
A motor-driven linkage system with links fabricated from 3-dimensional braided composite materials was studied. A group of coupling dynamic equations of the system, including composite materials parameters, electromag... A motor-driven linkage system with links fabricated from 3-dimensional braided composite materials was studied. A group of coupling dynamic equations of the system, including composite materials parameters, electromagnetism parameters of the motor and structural parameters of the link mechanism, were established by finite element method. Based on the air-gap field of non-uniform airspace of three-phase alternating current motor caused by the vibration eccentricity of rotor, the relation of electromechanical coupling at the actual running state was analyzed. And the motor element, which defines the transverse vibration and torsional vibration of the motor as its nodal displacement, was established. Then, based on the damping element model and the expression of energy dissipation of the 3-dimentional braided composite materials, the damping matrix of the system was established by calculating each order modal damping of the mechanism. 展开更多
关键词 elastic mechanism finite element composite material electromechanical coupling dynamic analysis
下载PDF
Deformation mechanism of surrounding rocks and key control technology for a roadway driven along goaf in fully mechanized top-coal caving face 被引量:10
13
作者 李学华 《Journal of Coal Science & Engineering(China)》 2003年第1期28-32,共5页
The variation of the stress in the bolted surrounding rocks structure of the roadway driven along goaf in a fully mechanized top coal caving face with moderate stable conditions are studied by using numerical calculat... The variation of the stress in the bolted surrounding rocks structure of the roadway driven along goaf in a fully mechanized top coal caving face with moderate stable conditions are studied by using numerical calculation. The essential deformation characteristics of the surrounding rocks in this kind of roadway are obtained and the key technology of bolting support used under these conditions is put forward. 展开更多
关键词 moderate stability gob side entry driving in a fully mechanized top coal caving face stress deformation bolting support
下载PDF
Precise robust motion control of cell puncture mechanism driven by piezoelectric actuators with fractional-order nonsingular terminal slidingmode control 被引量:3
14
作者 Shengdong Yu Hongtao Wu +2 位作者 Mingyang Xie Haiping Lin Jinyu Ma 《Bio-Design and Manufacturing》 SCIE CSCD 2020年第4期410-426,共17页
A novel robust controller is proposed in this study to realize the precise motion control of a cell puncture mechanism(CPM)driven by piezoelectric ceramics(PEAs).The entire dynamic model of CPM is constructed based on... A novel robust controller is proposed in this study to realize the precise motion control of a cell puncture mechanism(CPM)driven by piezoelectric ceramics(PEAs).The entire dynamic model of CPM is constructed based on the Bouc–Wen model,and the nonlinear part of the dynamic model is optimized locally to facilitate the construction of a robust controller.A model-based,nonlinear robust controller is constructed using time-delay estimation(TDE)and fractional-order nonsingular terminal sliding mode(FONTSM).The proposed controller does not require prior knowledge of unknown disturbances due to its real-time online estimation and compensation of unknown terms by using the TDE technology.The controller also has finite-time convergence and high-precision trajectory tracking capabilities due to FONTSM manifold and fast terminal sliding mode-type reaching law.The stability of the closed-loop system is proved by Lyapunov stability theory.Computer simulation and hardware-in-loop simulation experiments of CPM verify that the proposed controller outperforms traditional terminal sliding mode controllers,such as the integer-order or model-free controller.The proposed controller can also continuously output without chattering and has high control accuracy.Zebrafish embryo is used as a verification target to complete the cell puncture experiment.From the engineering application perspective,the proposed control strategy can be effectively applied in a PEA-driven CPM. 展开更多
关键词 Cell puncture mechanism(CPM) Piezoelectric actuator(PEA) Robust motion control Fractional-order nonsingular terminal sliding mode(FONTSM) Time-delay estimation(TDE)
下载PDF
Failure mechanism and infrared radiation characteristic of hard siltstone induced by stratification effect 被引量:1
15
作者 CHENG Yun SONG Zhanping +2 位作者 XU Zhiwei YANG Tengtian TIAN Xiaoxu 《Journal of Mountain Science》 SCIE CSCD 2024年第3期1058-1074,共17页
The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and tempora... The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass. 展开更多
关键词 Hard siltstone Failure mechanism Stratification effect Infrared radiation characteristic Temporal-damage mechanism DISSIMILATION
下载PDF
Regeneration of the heart:f rom molecular mechanisms to clinical therapeutics 被引量:2
16
作者 Qian-Yun Guo Jia-Qi Yang +1 位作者 Xun-Xun Feng Yu-Jie Zhou 《Military Medical Research》 SCIE CAS CSCD 2024年第1期80-97,共18页
Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public hea... Heart injury such as myocardial infarction leads to cardiomyocyte loss,fibrotic tissue deposition,and scar formation.These changes reduce cardiac contractility,resulting in heart failure,which causes a huge public health burden.Military personnel,compared with civilians,is exposed to more stress,a risk factor for heart diseases,making cardiovascular health management and treatment innovation an important topic for military medicine.So far,medical intervention can slow down cardiovascular disease progression,but not yet induce heart regeneration.In the past decades,studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury.Insights have emerged from studies in animal models and early clinical trials.Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease.In this review,we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury. 展开更多
关键词 Heart regeneration Cardiac disease THERAPEUTICS Signaling mechanisms
下载PDF
The underlying mechanism of variety–water–nitrogen–stubble damage interactions on yield formation in ratoon rice with low stubble height under mechanized harvesting 被引量:2
17
作者 Jingnan Zou Ziqin Pang +11 位作者 Zhou Li Chunlin Guo Hongmei Lin Zheng Li Hongfei Chen Jinwen Huang Ting Chen Hailong Xu Bin Qin Puleng Letuma Weiwei Lin Wenxiong Lin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期806-823,共18页
Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary ... Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary bud sprouting and yield formation in ratoon rice. This study used widely recommended conventional rice Jiafuzhan and hybrid rice Yongyou 2640 as the test materials to conduct a four-factor block design field experiment in a greenhouse of the experimental farm of Fujian Agricultural and Forestry University, China from 2018 to 2019.The treatments included fertilization and no fertilization, alternate wetting and drying irrigation and continuous water flooding irrigation, and plots with and without artificial crushing damage on the rice stubble. At the same time, a 13C stable isotope in-situ detection technology was used to fertilize the pot experiment. The results showed significant interactions among varieties, water management, nitrogen application and stubble status.Relative to the long-term water flooding treatment, the treatment with sequential application of nitrogen fertilizer coupled with moderate field drought for root-vigor and tiller promotion before and after harvesting of the main crop, significantly improved the effective tillers from low position nodes. This in turn increased the effective panicles per plant and grains per panicle by reducing the influence of artificial crushing damage on rice stubble and achieving a high yield of the regenerated rice. Furthermore, the partitioning of 13C assimilates to the residual stubble and its axillary buds were significantly improved at the mature stage of the main crop, while the translocation rate to roots and rhizosphere soil was reduced at the later growth stage of ratooning season rice. This was triggered by the metabolism of hormones and polyamines at the stem base regulated by the interaction of water and fertilizer at this time. We therefore suggest that to achieve a high yield of ratoon rice with low stubble height under mechanized harvesting, the timely application of nitrogen fertilizer is fundamental,coupled with moderate field drying for root-vigor preservation and tiller promotion before and after the mechanical harvesting of the main crop. 展开更多
关键词 mechanized harvesting ratoon rice rice stubble yield attributes
下载PDF
Roadbed Subsidence Mechanisms under the Driven of Penetration-Soak Coupling
18
作者 Hongkai Chen Dan Liang 《Journal of Geoscience and Environment Protection》 2017年第2期97-106,共10页
Roadbed subsidence is one of the main types of highway flood damage, the periodic fluctuation of the river water level and the softening of the subgrade soils by the river water immersion for a long time are the main ... Roadbed subsidence is one of the main types of highway flood damage, the periodic fluctuation of the river water level and the softening of the subgrade soils by the river water immersion for a long time are the main inducement factors of the subgrade subsidence. Based on the theory of absorbing water infiltration in unsaturated soil, calculation formula of dynamic stability coefficient of subgrade is established by using the Swedish arc method. Example analysis shows that, soil roadbed suffers the water permeability-soak, road-bed’s stability reduce with the time, and leads to roadbed subsidence. Research results for improving roadbed subsidence water logging mechanism understanding level have a positive meaning. 展开更多
关键词 Road Engineering SUBSIDENCE mechanism Penetration-Soaking COUPLING Soil ROADBED
下载PDF
Drug resistance mechanisms in cancers:Execution of prosurvival strategies 被引量:1
19
作者 Pavan Kumar Dhanyamraju 《Journal of Biomedical Research》 CAS CSCD 2024年第2期95-121,共27页
One of the quintessential challenges in cancer treatment is drug resistance.Several mechanisms of drug resistance have been described to date,and new modes of drug resistance continue to be discovered.The phenomenon o... One of the quintessential challenges in cancer treatment is drug resistance.Several mechanisms of drug resistance have been described to date,and new modes of drug resistance continue to be discovered.The phenomenon of cancer drug resistance is now widespread,with approximately 90% of cancer-related deaths associated with drug resistance.Despite significant advances in the drug discovery process,the emergence of innate and acquired mechanisms of drug resistance has impeded the progress in cancer therapy.Therefore,understanding the mechanisms of drug resistance and the various pathways involved is integral to treatment modalities.In the present review,I discuss the different mechanisms of drug resistance in cancer cells,including DNA damage repair,epithelial to mesenchymal transition,inhibition of cell death,alteration of drug targets,inactivation of drugs,deregulation of cellular energetics,immune evasion,tumor-promoting inflammation,genome instability,and other contributing epigenetic factors.Furthermore,I highlight available treatment options and conclude with future directions. 展开更多
关键词 cancer drug resistance mechanismS MICRORNAS treatment strategies
下载PDF
To explore the mechanism of Yigong San anti-gastric cancer and immune regulation 被引量:1
20
作者 Dou-Dou Lu Ling Yuan +8 位作者 Zhao-Zhao Wang Jian-Jun Zhao Yu-Hua Du Na Ning Guo-Qing Chen Shi-Cong Huang Yi Yang Zhe Zhang Yi Nan 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第5期1965-1994,共30页
BACKGROUND Yigong San(YGS)is a representative prescription for the treatment of digestive disorders,which has been used in clinic for more than 1000 years.However,the mechanism of its anti-gastric cancer and regulate ... BACKGROUND Yigong San(YGS)is a representative prescription for the treatment of digestive disorders,which has been used in clinic for more than 1000 years.However,the mechanism of its anti-gastric cancer and regulate immunity are still remains unclear.AIM To explore the mechanism of YGS anti-gastric cancer and immune regulation.METHODS Firstly,collect the active ingredients and targets of YGS,and the differentially expressed genes of gastric cancer.Secondly,constructed a protein-protein interaction network between the targets of drugs and diseases,and screened hub genes.Then the clinical relevance,mutation and repair,tumor microenvironment and drug sensitivity of the hub gene were analyzed.Finally,molecular docking was used to verify the binding ability of YGS active ingredient and hub genes.RESULTS Firstly,obtained 55 common targets of gastric cancer and YGS.The Kyoto Encyclopedia of Genes and Genomes screened the microtubule-associated protein kinase signaling axis as the key pathway and IL6,EGFR,MMP2,MMP9 and TGFB1 as the hub genes.The 5 hub genes were involved in gastric carcinogenesis,staging,typing and prognosis,and their mutations promote gastric cancer progression.Finally,molecular docking results confirmed that the components of YGS can effectively bind to therapeutic targets.CONCLUSION YGS has the effect of anti-gastric cancer and immune regulation. 展开更多
关键词 Gastric cancer Yigong San mechanism IMMUNE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部