To estimate the aggressivity of vehicles in frontal crashes, national highway traffic safety administration (NHTSA) has introduced the driver fatality ratio, DFR, for different vehicle-to-vehicle categories. The DFR p...To estimate the aggressivity of vehicles in frontal crashes, national highway traffic safety administration (NHTSA) has introduced the driver fatality ratio, DFR, for different vehicle-to-vehicle categories. The DFR proposed by NHTSA is based on the actual crash statistical data, which makes it difficult to evaluate for other vehicle categories newly introduced to the market, as they do not have sufficient crash statistics. A finite element (FE) methodology is proposed in this study based on computational reconstruction of crashes and some objective measures to predict the relative risk of DFR associated with any vehicle-to-vehicle crash. The suggested objective measures include the ratios of maximum intrusion in the passenger compartments of the vehicles in crash, and the transmitted peak deceleration of the vehicles’ center of gravity, which are identified as the main influencing parameters on occupant injury. The suitability of the proposed method is established for a range of bullet light truck and van (LTV) categories against a small target passenger car with published data by NHTSA. A mathematical relation between the objective measures and DFR is then developed. The methodology is then extended to predict the relative risk of DFR for a crossover category vehicle, a light pick-up truck, and a mid-size car in crash against a small size passenger car. It is observed that the ratio of intrusions produces a reasonable estimate for the DFR, and that it can be utilized in predicting the relative risk of fatality ratios in head-on collisions. The FE methodology proposed in this study can be utilized in design process of a vehicle to reduce the aggressivity of the vehicle and to increase the on-road fleet compatibility in order to reduce the occupant injury out- come.展开更多
针对出口欧洲的国产某型号拖拉机驾驶室内存在的异常噪声问题,提出利用频谱分析对异常噪声特性进行辨识,并利用壁板贡献度分析对引起异常噪声的主要机构进行排序,通过理论分析结合测试试验,为拖拉机驾驶室降噪措施的制定提供了有效的参...针对出口欧洲的国产某型号拖拉机驾驶室内存在的异常噪声问题,提出利用频谱分析对异常噪声特性进行辨识,并利用壁板贡献度分析对引起异常噪声的主要机构进行排序,通过理论分析结合测试试验,为拖拉机驾驶室降噪措施的制定提供了有效的参考意见。经工程实践验证,所提方法可以有效消除驾驶室内异常噪声,同时降低驾驶员耳旁噪声2 d B(A),具有一定工程应用价值。展开更多
文摘To estimate the aggressivity of vehicles in frontal crashes, national highway traffic safety administration (NHTSA) has introduced the driver fatality ratio, DFR, for different vehicle-to-vehicle categories. The DFR proposed by NHTSA is based on the actual crash statistical data, which makes it difficult to evaluate for other vehicle categories newly introduced to the market, as they do not have sufficient crash statistics. A finite element (FE) methodology is proposed in this study based on computational reconstruction of crashes and some objective measures to predict the relative risk of DFR associated with any vehicle-to-vehicle crash. The suggested objective measures include the ratios of maximum intrusion in the passenger compartments of the vehicles in crash, and the transmitted peak deceleration of the vehicles’ center of gravity, which are identified as the main influencing parameters on occupant injury. The suitability of the proposed method is established for a range of bullet light truck and van (LTV) categories against a small target passenger car with published data by NHTSA. A mathematical relation between the objective measures and DFR is then developed. The methodology is then extended to predict the relative risk of DFR for a crossover category vehicle, a light pick-up truck, and a mid-size car in crash against a small size passenger car. It is observed that the ratio of intrusions produces a reasonable estimate for the DFR, and that it can be utilized in predicting the relative risk of fatality ratios in head-on collisions. The FE methodology proposed in this study can be utilized in design process of a vehicle to reduce the aggressivity of the vehicle and to increase the on-road fleet compatibility in order to reduce the occupant injury out- come.
文摘针对出口欧洲的国产某型号拖拉机驾驶室内存在的异常噪声问题,提出利用频谱分析对异常噪声特性进行辨识,并利用壁板贡献度分析对引起异常噪声的主要机构进行排序,通过理论分析结合测试试验,为拖拉机驾驶室降噪措施的制定提供了有效的参考意见。经工程实践验证,所提方法可以有效消除驾驶室内异常噪声,同时降低驾驶员耳旁噪声2 d B(A),具有一定工程应用价值。