The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajecto...The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajectories that conform to real driver behavior habits.In addition,owing to the strong time-varying dynamic characteristics of obstacle avoidance scenarios,it is necessary to design numerous trajectory optimization functions and adjust the corresponding parameters.Therefore,an anthropomorphic obstacle-avoidance trajectory planning strategy for adaptive driving scenarios is proposed.First,numerous expert-demonstrated trajectories are extracted from the HighD natural driving dataset.Subsequently,a trajectory expectation feature-matching algorithm is proposed that uses maximum entropy inverse reinforcement learning theory to learn the extracted expert-demonstrated trajectories and achieve automatic acquisition of the optimization function of the expert-demonstrated trajectory.Furthermore,a mapping model is constructed by combining the key driving scenario information that affects vehicle obstacle avoidance with the weight of the optimization function,and an anthropomorphic obstacle avoidance trajectory planning strategy for adaptive driving scenarios is proposed.Finally,the proposed strategy is verified based on real driving scenarios.The results show that the strategy can adjust the weight distribution of the trajectory optimization function in real time according to the“emergency degree”of obstacle avoidance and the state of the vehicle.Moreover,this strategy can generate anthropomorphic trajectories that are similar to expert-demonstrated trajectories,effectively improving the adaptability and acceptability of trajectories in driving scenarios.展开更多
Intelligent speed adaptation (ISA) is considered as an effective measure to reduce number of traffic accidents in the field of intelligent transportation systems (ITS). On the other hand, its effects for traffic s...Intelligent speed adaptation (ISA) is considered as an effective measure to reduce number of traffic accidents in the field of intelligent transportation systems (ITS). On the other hand, its effects for traffic safety are still doubted by many people. To make the possibility analysis, an experiment is conducted by using driving simulator. Regarding ISA ap- proaches, there are three modes: mandatory, voluntary and advisory. Among them, the advisory type seems to be the easiest one to introduce. Therefore, we focus on the advisory mode in this study by considering ISA just at the beginning stage in Japan. The experiment consists of four steps: without ISA, ISA using pictures, ISA using voices and again without ISA. The outputs obtained from the driving simulator are analyzed combined with the consciousness of the participants. The experiment shows that the ISA can improve recognition of speed limitation especially for people who have random rambling or looking aside tendency. Furthermore, the ISA especially when using voices can contribute in changing the consciousness of people who are aggressive in driving. Their driving speeds can reduce so that positive effects on traffic safety can be concluded.展开更多
The improvement in accuracy of in vitro diagnosis has always been the focus of early screening of thyroid dysfunction.We constructed a microfluidic chip based on a polystyrene polymer substrate.Total triiodothyronine(...The improvement in accuracy of in vitro diagnosis has always been the focus of early screening of thyroid dysfunction.We constructed a microfluidic chip based on a polystyrene polymer substrate.Total triiodothyronine(TT3),total thyroxine(TT4),free triiodothyronine(FT3),free thyroxine(FT4),and thyrotropin(TSH) in human whole blood samples were analysed by fluorescence immunoassay to evaluate thyroid function.The results indicate that the microfluidic chip shows a good linear relationship in the detection of TT3,TT4,FT3,FT4,and TS H standards,and the correlation coefficient(r) is not less than0.9900.In addition,the chip also has strong anti-interference(RSD%≤5%) and good repeatability(CV≤8%),and its inter-batch differences are small(CV ≤15%).The results of practical application in clinical thyroid function mea surement indicated its high accuracy(r≥0.9900).It provides a new method for the determination of thyroid function and lays a foundation for subsequent clinical application.展开更多
基金supported by the National Natural Science Foundation of China(51875302)。
文摘The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajectories that conform to real driver behavior habits.In addition,owing to the strong time-varying dynamic characteristics of obstacle avoidance scenarios,it is necessary to design numerous trajectory optimization functions and adjust the corresponding parameters.Therefore,an anthropomorphic obstacle-avoidance trajectory planning strategy for adaptive driving scenarios is proposed.First,numerous expert-demonstrated trajectories are extracted from the HighD natural driving dataset.Subsequently,a trajectory expectation feature-matching algorithm is proposed that uses maximum entropy inverse reinforcement learning theory to learn the extracted expert-demonstrated trajectories and achieve automatic acquisition of the optimization function of the expert-demonstrated trajectory.Furthermore,a mapping model is constructed by combining the key driving scenario information that affects vehicle obstacle avoidance with the weight of the optimization function,and an anthropomorphic obstacle avoidance trajectory planning strategy for adaptive driving scenarios is proposed.Finally,the proposed strategy is verified based on real driving scenarios.The results show that the strategy can adjust the weight distribution of the trajectory optimization function in real time according to the“emergency degree”of obstacle avoidance and the state of the vehicle.Moreover,this strategy can generate anthropomorphic trajectories that are similar to expert-demonstrated trajectories,effectively improving the adaptability and acceptability of trajectories in driving scenarios.
文摘Intelligent speed adaptation (ISA) is considered as an effective measure to reduce number of traffic accidents in the field of intelligent transportation systems (ITS). On the other hand, its effects for traffic safety are still doubted by many people. To make the possibility analysis, an experiment is conducted by using driving simulator. Regarding ISA ap- proaches, there are three modes: mandatory, voluntary and advisory. Among them, the advisory type seems to be the easiest one to introduce. Therefore, we focus on the advisory mode in this study by considering ISA just at the beginning stage in Japan. The experiment consists of four steps: without ISA, ISA using pictures, ISA using voices and again without ISA. The outputs obtained from the driving simulator are analyzed combined with the consciousness of the participants. The experiment shows that the ISA can improve recognition of speed limitation especially for people who have random rambling or looking aside tendency. Furthermore, the ISA especially when using voices can contribute in changing the consciousness of people who are aggressive in driving. Their driving speeds can reduce so that positive effects on traffic safety can be concluded.
文摘The improvement in accuracy of in vitro diagnosis has always been the focus of early screening of thyroid dysfunction.We constructed a microfluidic chip based on a polystyrene polymer substrate.Total triiodothyronine(TT3),total thyroxine(TT4),free triiodothyronine(FT3),free thyroxine(FT4),and thyrotropin(TSH) in human whole blood samples were analysed by fluorescence immunoassay to evaluate thyroid function.The results indicate that the microfluidic chip shows a good linear relationship in the detection of TT3,TT4,FT3,FT4,and TS H standards,and the correlation coefficient(r) is not less than0.9900.In addition,the chip also has strong anti-interference(RSD%≤5%) and good repeatability(CV≤8%),and its inter-batch differences are small(CV ≤15%).The results of practical application in clinical thyroid function mea surement indicated its high accuracy(r≥0.9900).It provides a new method for the determination of thyroid function and lays a foundation for subsequent clinical application.