Deep foundations are currently used in engineering practice to solve problems caused by weak geotechnical characteristics of the ground.Impact pile driving is an interesting and viable solution from economic and techn...Deep foundations are currently used in engineering practice to solve problems caused by weak geotechnical characteristics of the ground.Impact pile driving is an interesting and viable solution from economic and technical points of view.However,it is necessary to ensure that the environmental drawbacks,namely ground-borne vibration,are adequately met.For this purpose,the authors propose an axisymmetric finite element method-perfectly matched layer(FEM-PML)approach,where the nonlinear behavior of the soil is addressed through an equivalent linear methodology.Given the complexity of the problem,an experimental test site was developed and fully characterized.The experimental work comprised in-situ and laboratory soil characterization,as well as the measurement of vibrations induced during pile driving.The comparison between experimental and numerical results demonstrated a very good agreement,from which it can be concluded that the proposed numerical approach is suitable for the prediction of vibrations induced by impact pile driving.The experimental database is available as supplemental data and may be used by other researchers in the validation of their prediction models.展开更多
The paper presents an improved plane layout for stabilizing piles based on a proposed piecewise function expression for the irregular driving force. Based on the specific morphological characteristics of a highway lan...The paper presents an improved plane layout for stabilizing piles based on a proposed piecewise function expression for the irregular driving force. Based on the specific morphological characteristics of a highway landslide, the piecewise function is used to calculate the irregular driving force by dividing the landslide into several sub-areas.Furthermore, the reasonable layout range and pile spacing can be obtained based on the piecewise function expression of the irregular driving force and on relevant research results of the plane layout for stabilizing piles. Therefore, an improved plane layout of stabilizing piles is presented in consideration of a piecewise function expression of the irregular driving force. A highway landslide located in eastern Guizhou Province, China, is analyzed as a case study using the proposed method. The results demonstrate that the theory presented in this paper provides improved economic benefits and can reduce the requirednumber of stabilizing piles by 28.6% compared with the conventional plane layout scheme.展开更多
Impact pile driving is an interesting technique for the construction of deep foundations from a practical and economical point of view.However,the generalization of this technique can be restricted due to the excessiv...Impact pile driving is an interesting technique for the construction of deep foundations from a practical and economical point of view.However,the generalization of this technique can be restricted due to the excessive vibration levels that can be generated,which can be especially problematic in residential areas.However,different mitigation measures can be applied to prevent excessive vibration levels inside buildings located near construction sites.To compare its efficiency through a numerical prediction tool,two experimental test sites are first presented and characterized.From the results obtained,it was found that the construction of an open trench near the impact source can be used as an efficient mitigation measure to reduce the maximum vibration levels evaluated in this study.展开更多
Long piles of the ocean oil platform are usually manufactured as the integration of several segments, which have to be assembled one by one during installation. During pile driving, excessive pore pressure will build ...Long piles of the ocean oil platform are usually manufactured as the integration of several segments, which have to be assembled one by one during installation. During pile driving, excessive pore pressure will build up in such a high level that hydraulic fracturing in the soil round the pile may take place, which will cause the soil to consolidate much faster during pile extension period. Consequently, after pile extension, the soil strength will recover to some extent and the driving resistance will increase considerably, which makes restarting driving the pile very difficult and even causes refusal. A finite element (FE) analysis procedure is presented for judging the risk of refusal by estimating the blow counts after pile extension, in which the regain of soil strength is considered. A case analysis in Bohai Gulf is performed using the proposed orocedure to exolain the nile refusal phenomenon.展开更多
Vibratory driving is the most efficient method of sheet pile installation. The elimination or at least reduction of harmful consequences of sheet pile vibratory driving becomes an increasingly important and often the ...Vibratory driving is the most efficient method of sheet pile installation. The elimination or at least reduction of harmful consequences of sheet pile vibratory driving becomes an increasingly important and often the decisive factor in the selection of the excavation protection technology. In difficult soil conditions with strength soil parameters, pressure water jetting precedes sheet pile driving. This technique changes the soil properties, destroying its existing structure near the installed sheet pile. Unfortunately, the results and achievements of contractors using this technique are very often held confidential or simply remain in the records and it is difficult to find papers on this subject. This article features a detailed description of jet-assisted sheet pile driving, including a prefabrication description for the sheet pile toe used to jet water through, water pressure and quantity data and the results with regard to reduce vibrations and noise, as well as to the increase in sheet pile vibratory driving performance.展开更多
There are various methods for analyzing pile driving process such as dynamic formulas, wave equation analyses and dynamic measurements. The programs of the two latter methods are relatively expensive to purchase and a...There are various methods for analyzing pile driving process such as dynamic formulas, wave equation analyses and dynamic measurements. The programs of the two latter methods are relatively expensive to purchase and also require trained engineers to interpret the data it collects. Meanwhile, the use of the site specific empirical formulas based on the real cases of pile driving and output analyses of the wave equation analysis programs can be beneficial. In the current study, pile driving data from three sites in the south of Iran were collected. Using the data of these cases and one-dimensional wave equation analysis program GRLWEAP, couple of experimental formulas which determine the proper range of hammer's ID for driving a pile, are proposed. Finally, due to the importance of the time in marine projects, another experimental formula is also proposed for estimation of the total driving time.展开更多
Complexity and implementation of design norms in Cameroon required a proven foreign expertise, but nowadays local engineers are mastering modern construction techniques. They are turning to pile foundations to solve t...Complexity and implementation of design norms in Cameroon required a proven foreign expertise, but nowadays local engineers are mastering modern construction techniques. They are turning to pile foundations to solve the problem of construction sites on weak soils. The objective of this work is to present the trend of the country pile-driving capacity of some foundations design and construction companies. The proposed analytical method is based on Finite Element Method and on the theory of wave's propagation and transmission along the pile taking into account experimental data on the construction site. The proposed method is validated through recorded data during the construction of the Mungo Bridge in Cameroon, and obtained analytical results are in agreement with experimental results.展开更多
基金Programmatic funding-UIDP/04708/2020 of the CONSTRUCT-Instituto de I&D em Estruturas e Construções-funded by national funds through the FCT/MCTES(PIDDAC)Project PTDC/ECI-CON/29634/2017-POCI-01-0145-FEDER-029634-funded by FEDER funds through COMPETE2020-Programa Operacional Competitividade e Internacionalização(POCI)+1 种基金by national funds(PIDDAC)through FCT/MCTES.Grant No.2022.00898CEECIND(Scientific Employment Stimulus-5th Edition)provided by “FCT-Fundação para a Ciência e Tecnologia”。
文摘Deep foundations are currently used in engineering practice to solve problems caused by weak geotechnical characteristics of the ground.Impact pile driving is an interesting and viable solution from economic and technical points of view.However,it is necessary to ensure that the environmental drawbacks,namely ground-borne vibration,are adequately met.For this purpose,the authors propose an axisymmetric finite element method-perfectly matched layer(FEM-PML)approach,where the nonlinear behavior of the soil is addressed through an equivalent linear methodology.Given the complexity of the problem,an experimental test site was developed and fully characterized.The experimental work comprised in-situ and laboratory soil characterization,as well as the measurement of vibrations induced during pile driving.The comparison between experimental and numerical results demonstrated a very good agreement,from which it can be concluded that the proposed numerical approach is suitable for the prediction of vibrations induced by impact pile driving.The experimental database is available as supplemental data and may be used by other researchers in the validation of their prediction models.
基金supported by the National Key R&D Program of China (2017YFC1501304)the National Natural Science Fund of China (No. 41472261)+1 种基金 the Key Technical Project of Shenzhen Science Technology Project (No. JSGG20160331154546471) the Open Fund of State Key Laboratory of Geohazard Prevention and Geoenviroment Protection (Grant No. SKLGP2017K017)
文摘The paper presents an improved plane layout for stabilizing piles based on a proposed piecewise function expression for the irregular driving force. Based on the specific morphological characteristics of a highway landslide, the piecewise function is used to calculate the irregular driving force by dividing the landslide into several sub-areas.Furthermore, the reasonable layout range and pile spacing can be obtained based on the piecewise function expression of the irregular driving force and on relevant research results of the plane layout for stabilizing piles. Therefore, an improved plane layout of stabilizing piles is presented in consideration of a piecewise function expression of the irregular driving force. A highway landslide located in eastern Guizhou Province, China, is analyzed as a case study using the proposed method. The results demonstrate that the theory presented in this paper provides improved economic benefits and can reduce the requirednumber of stabilizing piles by 28.6% compared with the conventional plane layout scheme.
基金Programmatic funding-UIDP/04708/2020 of the CONSTRUCT-Instituto de I&D em Estruturas e Construções-funded by national funds through the FCT/MCTES(PIDDAC)Project PTDC/ECI-CON/29634/2017-POCI-01-0145-FEDER-029634-funded by FEDER funds through COMPETE2020-Programa Operacional Competitividade e Internacionalização(POCI)by national funds(PIDDAC)through FCT/MCTES。
文摘Impact pile driving is an interesting technique for the construction of deep foundations from a practical and economical point of view.However,the generalization of this technique can be restricted due to the excessive vibration levels that can be generated,which can be especially problematic in residential areas.However,different mitigation measures can be applied to prevent excessive vibration levels inside buildings located near construction sites.To compare its efficiency through a numerical prediction tool,two experimental test sites are first presented and characterized.From the results obtained,it was found that the construction of an open trench near the impact source can be used as an efficient mitigation measure to reduce the maximum vibration levels evaluated in this study.
基金supported by the National Natural Science Foundation of China(51322904 and 51279127)the Program for New Century Excellent Talents in University(HCET-11-0370)
文摘Long piles of the ocean oil platform are usually manufactured as the integration of several segments, which have to be assembled one by one during installation. During pile driving, excessive pore pressure will build up in such a high level that hydraulic fracturing in the soil round the pile may take place, which will cause the soil to consolidate much faster during pile extension period. Consequently, after pile extension, the soil strength will recover to some extent and the driving resistance will increase considerably, which makes restarting driving the pile very difficult and even causes refusal. A finite element (FE) analysis procedure is presented for judging the risk of refusal by estimating the blow counts after pile extension, in which the regain of soil strength is considered. A case analysis in Bohai Gulf is performed using the proposed orocedure to exolain the nile refusal phenomenon.
文摘Vibratory driving is the most efficient method of sheet pile installation. The elimination or at least reduction of harmful consequences of sheet pile vibratory driving becomes an increasingly important and often the decisive factor in the selection of the excavation protection technology. In difficult soil conditions with strength soil parameters, pressure water jetting precedes sheet pile driving. This technique changes the soil properties, destroying its existing structure near the installed sheet pile. Unfortunately, the results and achievements of contractors using this technique are very often held confidential or simply remain in the records and it is difficult to find papers on this subject. This article features a detailed description of jet-assisted sheet pile driving, including a prefabrication description for the sheet pile toe used to jet water through, water pressure and quantity data and the results with regard to reduce vibrations and noise, as well as to the increase in sheet pile vibratory driving performance.
文摘There are various methods for analyzing pile driving process such as dynamic formulas, wave equation analyses and dynamic measurements. The programs of the two latter methods are relatively expensive to purchase and also require trained engineers to interpret the data it collects. Meanwhile, the use of the site specific empirical formulas based on the real cases of pile driving and output analyses of the wave equation analysis programs can be beneficial. In the current study, pile driving data from three sites in the south of Iran were collected. Using the data of these cases and one-dimensional wave equation analysis program GRLWEAP, couple of experimental formulas which determine the proper range of hammer's ID for driving a pile, are proposed. Finally, due to the importance of the time in marine projects, another experimental formula is also proposed for estimation of the total driving time.
文摘Complexity and implementation of design norms in Cameroon required a proven foreign expertise, but nowadays local engineers are mastering modern construction techniques. They are turning to pile foundations to solve the problem of construction sites on weak soils. The objective of this work is to present the trend of the country pile-driving capacity of some foundations design and construction companies. The proposed analytical method is based on Finite Element Method and on the theory of wave's propagation and transmission along the pile taking into account experimental data on the construction site. The proposed method is validated through recorded data during the construction of the Mungo Bridge in Cameroon, and obtained analytical results are in agreement with experimental results.