期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Numerical and Experimental Study on Droplet Spreading Motion after Impingement Considering Dynamic Contact Angle with CCUP (CIP-Combined Unified Procedure) Method
1
作者 Soyoun Son Gwonhyun Ko Hongsun Ryou 《Journal of Energy and Power Engineering》 2013年第1期10-16,共7页
The contact angle is one of important parameters to simulate droplet spreading and impingement phenomena on the surface. In the most numerical research, it is assumed constant value and it is implemented as boundary c... The contact angle is one of important parameters to simulate droplet spreading and impingement phenomena on the surface. In the most numerical research, it is assumed constant value and it is implemented as boundary condition. However, contact angle is changed according to contact line velocity and time. Hence, for accurate simulation, dynamic contact angle which has various values as time elapsed is adopted. In the present study, the numerical analysis is performed on the droplet spreading phenomena considering dynamic contact angle function which is obtained from single droplet spreading experiment on the flat and bare surface. The CIP (cubic interpolated pseudo-particle) method by Yabe is used for analysis of interface between liquid and gas phases. The numerical results considering contact angle function which newly modeled as time and contact angle are compared with numerical results considering Hoffman's function and experimental data for range of Weber number which are 4.427 and 11.334. In contrast of numerical result considering Hoffman's function, the numerical result shows good agreement with experimental data as time elapsed in contact angle evolution, deformation of droplet spreading radius and height. Indeed, overall, the results display the increasing maximum spreading radius and the decreasing height as Weber numbers increased. 展开更多
关键词 CIP method droplet spreading height droplet spreading radius dynamic contact angle Hoffman's fimction.
下载PDF
Thermographic Observation of High-Frequency Ethanol Droplet Train Impingement on Heated Aluminum and Glass Surfaces
2
作者 Baris Burak Kanbur Sheng Quan Heng Fei Duan 《Fluid Dynamics & Materials Processing》 EI 2022年第6期1711-1718,共8页
The present study considers the impingement of a train of ethanol droplets on heated aluminum and glass surfaces.The surface temperature is allowed to vary in the interval 140℃–240℃.Impingement is considered with a... The present study considers the impingement of a train of ethanol droplets on heated aluminum and glass surfaces.The surface temperature is allowed to vary in the interval 140℃–240℃.Impingement is considered with an inclination of 63 degrees.The droplet diameter is 0.2 mm in both aluminum and glass surface experiments.Thermal gradients are observed with a thermographic camera.It is found that in comparison to glass,the aluminum surface displays very small liquid accumulations and better evaporation performance due to its higher thermal conductivity.The relatively low thermal conductivity of glass results in higher thermal gradients on the surface.The droplet impact area on the aluminum surface is smaller than the corresponding area for the glass surface.Interestingly,the liquid accumulation area is not symmetrical.Moreover,the extension of the droplet train impact region decreases on increasing the surface temperature because higher temperature values allow greater surface energy levels that enhance significantly the evaporation rate. 展开更多
关键词 droplet impingement BOILING thermal flow droplet spreading two phase flow heat transfer
下载PDF
Hydrodynamic Pattern Investigation of Ethanol Droplet Train Impingement on Heated Aluminum Surface
3
作者 Baris Burak Kanbur Sheng Quan Heng Fei Duan 《Fluid Dynamics & Materials Processing》 EI 2022年第5期1331-1338,共8页
Steady-state hydrodynamic patterns of ethanol droplet train impingement on the heated aluminum surface is investigated in the surface temperature range of 80°C–260°C using two different Weber numbers(We)of ... Steady-state hydrodynamic patterns of ethanol droplet train impingement on the heated aluminum surface is investigated in the surface temperature range of 80°C–260°C using two different Weber numbers(We)of 618 and 792.Instead of a vertical train impingement,the droplet train is sent to the aluminum surface with an incline of 63 degrees.Changes in the spreading length are observed at different surface temperatures for two different We values,which are obtained by using two different pinholes with 100 and 150μm diameters.The greatest spreading length is seen at the lowest surface temperature(80°C)and it continuously decreases until the surface temperature of 200°C.Above 200°C,the spreading length remains stable which is most probably because of the Leidenfrost effect.The spreading lengths of the experiments with 100μm are 46.4%smaller than the experiments with 150μm.Also,splashing angles are observed for both We values.The ranges of splashing angle observations are 140°C–200°C and 170°C–185°C for We values of 792 and 618,respectively. 展开更多
关键词 Hydrodynamic patterns BOILING droplet spreading two phase flow heat transfer
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部