This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula...This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula.The evaluation was conducted for the European Centre for Medium-Range Weather Forecasts(ECMWF)and National Centers for Environmental Prediction(NCEP)analysis data,as well as the simulation result using them as initial and lateral boundary conditions for the Weather Research and Forecasting model.Particularly,temperature and humidity profiles from 3D dropsonde observations from the National Center for Meteorological Science of the Korea Meteorological Administration served as validation data.Results showed that the ECMWF analysis consistently had smaller errors compared to the NCEP analysis,which exhibited a cold and dry bias in the lower levels below 850 hPa.The model,in terms of the precipitation simulations,particularly for high-intensity precipitation over the Yellow Sea,demonstrated higher accuracy when applying ECMWF analysis data as the initial condition.This advantage also positively influenced the simulation of rainfall events on the Korean Peninsula by reasonably inducing convective-favorable thermodynamic features(i.e.,warm and humid lower-level atmosphere)over the Yellow Sea.In conclusion,this study provides specific information about two global analysis datasets and their impacts on MCS-induced heavy rainfall simulation by employing dropsonde observation data.Furthermore,it suggests the need to enhance the initial field for MCS-induced heavy rainfall simulation and the applicability of assimilating dropsonde data for this purpose in the future.展开更多
Valuable dropsonde data were obtained from multiple field campaigns targeting tropical cyclones,namely Higos,Nangka,Saudel,and Atsani,over the western North Pacific by the Hong Kong Observatory and Taiwan Central Weat...Valuable dropsonde data were obtained from multiple field campaigns targeting tropical cyclones,namely Higos,Nangka,Saudel,and Atsani,over the western North Pacific by the Hong Kong Observatory and Taiwan Central Weather Bureau in 2020.The conditional nonlinear optimal perturbation(CNOP)method has been utilized in real-time to identify the sensitive regions for targeting observations adhering to the procedure of real-time field campaigns for the first time.The observing system experiments were conducted to evaluate the effect of dropsonde data and CNOP sensitivity on TC forecasts in terms of track and intensity,using the Weather Research and Forecasting model.It is shown that the impact of assimilating all dropsonde data on both track and intensity forecasts is case-dependent.However,assimilation using only the dropsonde data inside the sensitive regions displays unanimously positive effects on both the track and intensity forecast,either of which obtains comparable benefits to or greatly reduces deterioration of the skill when assimilating all dropsonde data.Therefore,these results encourage us to further carry out targeting observations for the forecast of tropical cyclones according to CNOP sensitivity.展开更多
The numerical product of hurricane tracks vastly depends on initial observation fields. However, the forecast error is very large because of lack of observational data, especially when hurricanes are over the sea. Thi...The numerical product of hurricane tracks vastly depends on initial observation fields. However, the forecast error is very large because of lack of observational data, especially when hurricanes are over the sea. This paper shows that extra non-real-time data (dropsonde data) can improve hurricane track forecasts compared with real-time observational data, and that the wind and relative humidity components of the dropsonde data have the greatest impact on the track forecasts.展开更多
To complement the atmospheric profile measurements under complex geographical environments and extreme weather conditions,a stratospheric balloon-based dropsonde technology,which is carried by a stratospheric balloon ...To complement the atmospheric profile measurements under complex geographical environments and extreme weather conditions,a stratospheric balloon-based dropsonde technology,which is carried by a stratospheric balloon platform from the Earth's surface to the upper troposphere and lower stratosphere(UTLS)to release the dropsonde for measurements,is independently developed and preliminarily assessed over the Tibetan Plateau(TP)in this study.The dropsonde system is mainly composed of the dropsonde chamber,dropsonde with a parachute,data receiving and communication antennas,dropsonde-releasing device,and GPS(Global Positioning System)modules.The dropsonde measurements can be sent in real time through satellite communication links and by radio signals to a data receiver at the ground control center for storage and processing.A total of eight dropsondes aboard the stratospheric balloon were successfully released during the TP campaign in 2020.A preliminary assessment was conducted based on a case comparison between the dropsonde and radiosonde measurements,which indicated that the dropsonde technology we developed can generally provide reasonable atmospheric profiles.However,further efforts are still required to improve the detection performance of the dropsonde sensors after long-term locating in the UTLS and to assess the accuracy and precision of the detection technology more carefully.展开更多
There was a new concept of ‘adaptive or targeting observation’ in recent years, which is anadditional and targeting observation based on the existing and fixed observing network for the atmosphere on theimpacted reg...There was a new concept of ‘adaptive or targeting observation’ in recent years, which is anadditional and targeting observation based on the existing and fixed observing network for the atmosphere on theimpacted region. Dropsonde is one of the important observing instruments in the adaptive or targetingobservation. In this paper, GRAPES, the next generation of numerical weather prediction system of China hasbeen used. The impacts on the typhoon Dujuan (No.200315) forecast in experiments with dropsonde have beenstudied and experiments on sensitivity have also been done. It was found that the forecasts of the elements havebeen improved obviously with the use of dropsonde, such as the path, the center location, and the intensity oftyphoon. It was also found in the sensitivity studies that the setting of deviation structure also has obviousimpacts on the forecast for typhoons. It is not true that the simulation is better when the proportion of the data ofdropsonde is larger in the course to modify the background.展开更多
基金supported by the Korea Meteorological Administration Research and Development Program “Developing Application Technology for Atmospheric Research Aircraft” (Grant No. KMA2018-00222)
文摘This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula.The evaluation was conducted for the European Centre for Medium-Range Weather Forecasts(ECMWF)and National Centers for Environmental Prediction(NCEP)analysis data,as well as the simulation result using them as initial and lateral boundary conditions for the Weather Research and Forecasting model.Particularly,temperature and humidity profiles from 3D dropsonde observations from the National Center for Meteorological Science of the Korea Meteorological Administration served as validation data.Results showed that the ECMWF analysis consistently had smaller errors compared to the NCEP analysis,which exhibited a cold and dry bias in the lower levels below 850 hPa.The model,in terms of the precipitation simulations,particularly for high-intensity precipitation over the Yellow Sea,demonstrated higher accuracy when applying ECMWF analysis data as the initial condition.This advantage also positively influenced the simulation of rainfall events on the Korean Peninsula by reasonably inducing convective-favorable thermodynamic features(i.e.,warm and humid lower-level atmosphere)over the Yellow Sea.In conclusion,this study provides specific information about two global analysis datasets and their impacts on MCS-induced heavy rainfall simulation by employing dropsonde observation data.Furthermore,it suggests the need to enhance the initial field for MCS-induced heavy rainfall simulation and the applicability of assimilating dropsonde data for this purpose in the future.
基金jointly sponsored by the National Nature Scientific Foundation of China(Grant.Nos.41930971 and 41775061)the National Key Research and Development Program of China(Grant No.2018YFC1506402)。
文摘Valuable dropsonde data were obtained from multiple field campaigns targeting tropical cyclones,namely Higos,Nangka,Saudel,and Atsani,over the western North Pacific by the Hong Kong Observatory and Taiwan Central Weather Bureau in 2020.The conditional nonlinear optimal perturbation(CNOP)method has been utilized in real-time to identify the sensitive regions for targeting observations adhering to the procedure of real-time field campaigns for the first time.The observing system experiments were conducted to evaluate the effect of dropsonde data and CNOP sensitivity on TC forecasts in terms of track and intensity,using the Weather Research and Forecasting model.It is shown that the impact of assimilating all dropsonde data on both track and intensity forecasts is case-dependent.However,assimilation using only the dropsonde data inside the sensitive regions displays unanimously positive effects on both the track and intensity forecast,either of which obtains comparable benefits to or greatly reduces deterioration of the skill when assimilating all dropsonde data.Therefore,these results encourage us to further carry out targeting observations for the forecast of tropical cyclones according to CNOP sensitivity.
文摘The numerical product of hurricane tracks vastly depends on initial observation fields. However, the forecast error is very large because of lack of observational data, especially when hurricanes are over the sea. This paper shows that extra non-real-time data (dropsonde data) can improve hurricane track forecasts compared with real-time observational data, and that the wind and relative humidity components of the dropsonde data have the greatest impact on the track forecasts.
基金This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences[grant number XDA17010101]the National Natural Science Foundation of China[grant number 41875183]the National Key R&D Program of China[grant number 2017YFA0603504].
文摘To complement the atmospheric profile measurements under complex geographical environments and extreme weather conditions,a stratospheric balloon-based dropsonde technology,which is carried by a stratospheric balloon platform from the Earth's surface to the upper troposphere and lower stratosphere(UTLS)to release the dropsonde for measurements,is independently developed and preliminarily assessed over the Tibetan Plateau(TP)in this study.The dropsonde system is mainly composed of the dropsonde chamber,dropsonde with a parachute,data receiving and communication antennas,dropsonde-releasing device,and GPS(Global Positioning System)modules.The dropsonde measurements can be sent in real time through satellite communication links and by radio signals to a data receiver at the ground control center for storage and processing.A total of eight dropsondes aboard the stratospheric balloon were successfully released during the TP campaign in 2020.A preliminary assessment was conducted based on a case comparison between the dropsonde and radiosonde measurements,which indicated that the dropsonde technology we developed can generally provide reasonable atmospheric profiles.However,further efforts are still required to improve the detection performance of the dropsonde sensors after long-term locating in the UTLS and to assess the accuracy and precision of the detection technology more carefully.
基金Multiple time levels of Dynamic / Physical Processes with Lagrange Non-hydrostatic GlobalModel and Study on the Coordination of Correlation (40575050)
文摘There was a new concept of ‘adaptive or targeting observation’ in recent years, which is anadditional and targeting observation based on the existing and fixed observing network for the atmosphere on theimpacted region. Dropsonde is one of the important observing instruments in the adaptive or targetingobservation. In this paper, GRAPES, the next generation of numerical weather prediction system of China hasbeen used. The impacts on the typhoon Dujuan (No.200315) forecast in experiments with dropsonde have beenstudied and experiments on sensitivity have also been done. It was found that the forecasts of the elements havebeen improved obviously with the use of dropsonde, such as the path, the center location, and the intensity oftyphoon. It was also found in the sensitivity studies that the setting of deviation structure also has obviousimpacts on the forecast for typhoons. It is not true that the simulation is better when the proportion of the data ofdropsonde is larger in the course to modify the background.