期刊文献+
共找到3,293篇文章
< 1 2 165 >
每页显示 20 50 100
Estimating the Drought-Induced Yield Loss for Winter Wheat in a Semi-Arid Region of the Southern United States Using a Drought Index
1
作者 Prem Woli Qingwu Xue +2 位作者 Gerald R. Smith Charles R. Long Francis M. Rouquette Jr. 《Agricultural Sciences》 2024年第8期812-829,共18页
The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This regio... The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This region is prone to drought and is projected to experience a drier climate. Droughts that coincide with the critical phenological phases of a crop can be remarkably costly. Although drought cannot be prevented, its losses can be minimized through mitigation measures if it is predicted in advance. Predicting yield loss from an imminent drought is an important need of stakeholders. One way to fulfill this need is using an agricultural drought index, such as the Agricultural Reference Index for Drought (ARID). Being plant physiology-based, ARID can represent drought-yield relationships accurately. This study developed an ARID-based yield model for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to water stress. The reasonable values of the drought sensitivity coefficients of the yield model indicated that it could reflect the phenomenon of water stress decreasing the winter wheat yields in this region reasonably. The values of the various metrics used to evaluate the model, including Willmott Index (0.86), Nash-Sutcliffe Index (0.61), and percentage error (26), indicated that the yield model performed fairly well at predicting the drought-induced yield loss for winter wheat. The yield model may be useful for predicting the drought-induced yield loss for winter wheat in the study region and scheduling irrigation allocation based on phenological phase-specific drought sensitivity. 展开更多
关键词 ARID drought drought index Growth-stage Model Phenological-Phase Prediction SEMI-ARID Wheat Yield
下载PDF
The Research about A Regional Drought Identifying System Based on Dynamic Drought Index 被引量:1
2
作者 王俊 胡继超 +1 位作者 袁学所 吴有华 《Meteorological and Environmental Research》 CAS 2010年第9期94-96,共3页
With the data of daily precipitation and daily evaporation,dynamic drought index was calculated and compared with the identification standard of drought grade to qualify the severity of drought.According to the dynami... With the data of daily precipitation and daily evaporation,dynamic drought index was calculated and compared with the identification standard of drought grade to qualify the severity of drought.According to the dynamic drought index,a regional drought identifying system was developed for the watershed between the reach of the Yangtze River and Huaihe River in Anhui Province by using VC++ working platform and Access database.This drought identifying system would be very useful to forecast and early warn the happening of drought in this area. 展开更多
关键词 drought index drought identifying system Daily precipitation China
下载PDF
Spatial and temporal variation of drought index in a typical steep alpine terrain in Hengduan Mountains 被引量:1
3
作者 ZHU Guo-feng YANG Ling +3 位作者 QIN Da-he TONG Hua-li LIU Yuan-feng LI Jia-fang 《Journal of Mountain Science》 SCIE CSCD 2016年第7期1186-1199,共14页
This study describes the spatial and temporal variation of a drought index and makes inferences regarding the environmental factors that influence this variability in the Hengduan Mountains. A drought index is typical... This study describes the spatial and temporal variation of a drought index and makes inferences regarding the environmental factors that influence this variability in the Hengduan Mountains. A drought index is typically used to determine the moisture conditions and the magnitude of water deficiency in a given area. Based on data from 26 meteorological stations over the period 1960-2012, the spatial and temporal variations of the drought index were analyzed using a thin plate smoothing splines method that considered elevation as a covariate. The drought index was estimated based on the potential evapotranspiration(E0) as defined by the Penman Monteith model modified by FAO(1998). The results of the reported analysis showed that the drought index in the Hengduan Mountains has been decreasing since 1960 at a rate of-0.008/a. This represented a progressive shift from the "sub-humid" class, which typified the wider area in the Hengduan Mountains, toward the "humid" class, which appeared in the Hengduan Mountains areas. The drought index was relatively high in the north and low in the south and the variation of the drought index varied with seasons. The drought index showed increasing trends in summer and autumn and it is greater in autumn than in summer, while it showed a decreasing trend in spring and winter. Drought index is inversely proportional to the soil relative humidity and Normalized Difference Vegetation Index(NDVI). 展开更多
关键词 drought index Normalized Difference Vegetation index Evapotranspiration Thin plate smoothing splines Hengduan Mountains
下载PDF
Assessment of an Evapotranspiration Deficit Drought Index in Relation to Impacts on Ecosystems 被引量:7
4
作者 Xia ZHANG Mingxing LI +3 位作者 Zhuguo MA Qing YANG Meixia LV Robin Clark 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第11期1273-1287,共15页
Ecosystems have increasingly been subject to the challenge of heavy drought under global warming. To quantitatively evaluate the impacts of drought on ecosystems, it is necessary to develop a drought index that can se... Ecosystems have increasingly been subject to the challenge of heavy drought under global warming. To quantitatively evaluate the impacts of drought on ecosystems, it is necessary to develop a drought index that can sensitively depict the response of vegetation to drought evolution at a biological time scale. For the ability of direct connection between climate and ecosystem by deficit of evapotranspiration, in the present study, a drought index was defined based on standardized evapotranspiration deficit (SEDI), according to the difference between actual and potential evapotranspiration, to meet the need for highlighting drought impacts on ecological processes. Comparisons with traditional indices show that SEDI can reasonably detect droughts and climatic dry and wet transitions, especially at a monthly time scale, and can also regenerate long-term trends. Moreover, SEDI can more sensitively capture the biological changes of ecosystems in response to the dynamics of drought intensity, compared with the indices of precipitation and temperature. SEDI is more practical than the precipitation and temperature indices to highlight signals of biological effects in climate droughts. Hence, it has potential for use in assessments of climate change and its impact on ecosystems. 展开更多
关键词 EVAPOTRANSPIRATION drought index vegetation ECOSYSTEM leaf area index climate change
下载PDF
Introducing a drought index to a crop model can help to reduce the gap between the simulated and statistical yield
5
作者 WANG Guo-Cheng ZHANG Qing XU Jing-Jing 《Atmospheric and Oceanic Science Letters》 CSCD 2018年第4期307-313,共7页
A well-established and pre-calibrated crop model can normally represent the overall characteristics of crop growth and yield.However,it can hardly include all relevant factors that affect the yield,and usually overest... A well-established and pre-calibrated crop model can normally represent the overall characteristics of crop growth and yield.However,it can hardly include all relevant factors that affect the yield,and usually overestimates the crop yield when extreme weather conditions occur.In this study,the authors first introduced a drought index(the Standardized Precipitation Evapotranspiration Index)into a process-based crop model(the Agro-C model).Then,the authors evaluated the model’s performance in simulating the historical crop yields in a double cropping system in the Huang-Huai-Hai Plain of China,by comparing the model simulations to the statistical records.The results showed that the adjusted Agro-C model significantly improved its performance in simulating the yields of both maize and wheat as affected by drought events,compared with its original version.It can be concluded that incorporating a drought index into a crop model is feasible and can facilitate closing the gap between simulated and statistical yields. 展开更多
关键词 Agro-C model CROP YIELD drought index
下载PDF
Index-based assessment of agricultural drought in a semi-arid region of Inner Mongolia, China 被引量:8
6
作者 Rui LI Atsushi TSUNEKAWA Mitsuru TSUBO 《Journal of Arid Land》 SCIE CSCD 2014年第1期3-15,共13页
Agricultural drought is a type of natural disaster that seriously impacts food security.Because the relationships among short-term rainfall,soil moisture,and crop growth are complex,accurate identification of a drough... Agricultural drought is a type of natural disaster that seriously impacts food security.Because the relationships among short-term rainfall,soil moisture,and crop growth are complex,accurate identification of a drought situation is difficult.In this study,using a conceptual model based on the relationship between water deficit and crop yield reduction,we evaluated the drought process in a typical rainfed agricultural region,Hailar county in Inner Mongolia autonomous region,China.To quantify drought,we used the precipitation-based Standardized Precipitation Index(SPI),the soil moisture-based Crop Moisture Index(CMI),as well as the Normalized Difference Vegetation Index(NDVI).Correlation analysis was conducted to examine the relationships between dekad-scale drought indices during the growing season(May–September)and final yield,according to data collection from 2000 to 2010.The results show that crop yield has positive relationships with CMI from mid-June to mid-July and with the NDVI anomaly throughout July,but no correlation with SPI.Further analysis of the relationship between the two drought indices shows that the NDVI anomaly responds to CMI with a lag of 1 dekad,particularly in July.To examine the feasibility of employing these indices for monitoring the drought process at a dekad time scale,a detailed drought assessment was carried out for selected drought years.The results confirm that the soil moisture-based vegetation indices in the late vegetative to early reproductive growth stages can be used to detect agricultural drought in the study area.Therefore,the framework of the conceptual model developed for drought monitoring can be employed to support drought mitigation in the rainfed agricultural region of Northern China. 展开更多
关键词 drought assessment drought index dekad time scale rainfed agriculture
下载PDF
A daily drought index based on evapotranspiration and its application in regional drought analyses 被引量:4
7
作者 Xia ZHANG Yawen DUAN +2 位作者 Jianping DUAN Dongnan JIAN Zhuguo MA 《Science China Earth Sciences》 SCIE EI CSCD 2022年第2期317-336,共20页
With climate warming, frequent drought events have occurred in recent decades, causing huge losses to industrial and agricultural production, and affecting people’s daily lives. The monitoring and forecasting of drou... With climate warming, frequent drought events have occurred in recent decades, causing huge losses to industrial and agricultural production, and affecting people’s daily lives. The monitoring and forecasting of drought events has drawn increasing attention. However, compared with the various monthly drought indices and their wide application in drought research,daily drought indices, which would be much more suitable for drought monitoring and forecasting, are still scarce. The development of a daily drought index would improve the accuracy of drought monitoring and forecasting, and facilitate the evaluation of existing indices. In this study, we constructed a new daily drought index, the daily evapotranspiration deficit index(DEDI), based on actual and potential evapotranspiration data from the high-resolution ERA5 reanalysis dataset of the European Center for Medium-Range Weather Forecasts. This new index was then applied to analyze the spatial and temporal evolution characteristics of four drought events that occurred in southwest, north, northeast, and eastern northwest China in the spring and summer of 2019. Comparisons with the operationally used Meteorological Drought Composite Index and another commonly used index, the Standardized Precipitation Evapotranspiration Index, indicated that DEDI characterized the spatiotemporal evolution of the four drought events reasonably well and was superior in depicting the onset and cessation of the drought events,as well as multiple drought intensity peaks. Additionally, DEDI considers land surface conditions, such as vegetation coverage,which enables its potential application not only for meteorological purposes but also for agricultural drought warning and monitoring. 展开更多
关键词 Actual evapotranspiration Potential evapotranspiration Daily drought index Meteorological drought drought events
原文传递
Annual growth of Fagus orientalis is limited by spring drought conditions in Iran’s Golestan Province
8
作者 Khalil Ghorbani Jahangir Mohammadi Laleh Rezaei Ghaleh 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期128-142,共15页
Due to the lack of a uniform and accurate defi-nition of‘drought’,several indicators have been introduced based on different variables and methods,and the efficiency of each of these is determined according to their... Due to the lack of a uniform and accurate defi-nition of‘drought’,several indicators have been introduced based on different variables and methods,and the efficiency of each of these is determined according to their relationship with drought.The relationship between two drought indices,SPI(standardized precipitation index)and SPEI(standard-ized precipitation-evapotranspiration index)in different sea-sons was investigated using annual rings of 15 tree samples to determine the effect of drought on the growth of oriental beech(Fagus orientalis Lipsky)in the Hyrcanian forests of northern Iran.The different evapotranspiration calcula-tion methods were evaluated on SPEI efficiency based on Hargreaves-Samani,Thornthwaite,and Penman-Monteith methods using the step-by-step M5 decision tree regression method.The results show that SPEI based on the Penman-Monteith in a three-month time scale(spring)had similar temporal changes and a better relationship with annual tree rings(R^(2)=0.81)at a 0.05 significant level.Abrupt change and a decreasing trend in the time series of annual tree rings are similar to the variation in the SPEI based on the Penman-Monteith method.Factors affecting evapotranspiration,temperature,wind speed,and sunshine hours(used in the Penman-Monteith method),increased but precipitation decreased.Using non-linear modeling methods,SPEI based on Penman-Monteith best illustrated climate changes affecting tree growth. 展开更多
关键词 Climate change drought index Hyrcanian forests SPEI'Annual growth rings Fagus orientalis
下载PDF
Response of drought to climate extremes in a semi-arid inland river basin in China
9
作者 QU Zhicheng YAO Shunyu LIU Dongwei 《Journal of Arid Land》 SCIE CSCD 2024年第11期1505-1521,共17页
Against the backdrop of global warming,climate extremes and drought events have become more severe,especially in arid and semi-arid areas.This study forecasted the characteristics of climate extremes in the Xilin Rive... Against the backdrop of global warming,climate extremes and drought events have become more severe,especially in arid and semi-arid areas.This study forecasted the characteristics of climate extremes in the Xilin River Basin(a semi-arid inland river basin)of China for the period of 2021–2100 by employing a multi-model ensemble approach based on three climate Shared Socioeconomic Pathway(SSP)scenarios(SSP1-2.6,SSP2-4.5,and SSP5-8.5)from the latest Coupled Model Intercomparison Project Phase 6(CMIP6).Furthermore,a linear regression,a wavelet analysis,and the correlation analysis were conducted to explore the response of climate extremes to the Standardized Precipitation Evapotranspiration Index(SPEI)and Streamflow Drought Index(SDI),as well as their respective trends during the historical period from 1970 to 2020 and during the future period from 2021 to 2070.The results indicated that extreme high temperatures and extreme precipitation will further intensify under the higher forcing scenarios(SSP5-8.5>SSP2-4.5>SSP1-2.6)in the future.The SPEI trends under the SSP1-2.6,SSP2-4.5,and SSP5-8.5 scenarios were estimated as–0.003/a,–0.004/a,and–0.008/a,respectively,indicating a drier future climate.During the historical period(1970–2020),the SPEI and SDI trends were–0.003/a and–0.016/a,respectively,with significant cycles of 15 and 22 a,and abrupt changes occurring in 1995 and 1996,respectively.The next abrupt change in the SPEI was projected to occur in the 2040s.The SPEI had a significant positive correlation with both summer days(SU)and heavy precipitation days(R10mm),while the SDI was only significantly positively correlated with R10mm.Additionally,the SPEI and SDI exhibited a strong and consistent positive correlation at a cycle of 4–6 a,indicating a robust interdependence between the two indices.These findings have important implications for policy makers,enabling them to improve water resource management of inland river basins in arid and semi-arid areas under future climate uncertainty. 展开更多
关键词 climate extremes climate change Standardized Precipitation Evapotranspiration index(SPEI) Streamflow drought index(SDI) wavelet analysis multi-model ensemble Xilin River Basin
下载PDF
Estimating the Yield Loss of Winter Wheat from Drought in the United States Southern Plains Region as Influenced by El Niño-Southern Oscillation (ENSO)
10
作者 Prem Woli Gerald R. Smith +1 位作者 Charles R. Long Francis M. Rouquette, Jr. 《Agricultural Sciences》 2024年第9期1018-1034,共17页
Wheat (Triticum aestivum L.) production is a major economic activity in most regional and rural areas in the Southern Plains, a semi-arid region of the United States. This region is vulnerable to drought and is projec... Wheat (Triticum aestivum L.) production is a major economic activity in most regional and rural areas in the Southern Plains, a semi-arid region of the United States. This region is vulnerable to drought and is projected to experience a drier climate in the future. Since the interannual variability in climate in this region is linked to an ocean-atmospheric phenomenon, called El Niño-Southern Oscillation (ENSO), droughts in this region may be associated with ENSO. Droughts that occur during the critical growth phases of wheat can be extremely costly. However, the losses due to an impending drought can be minimized through mitigation measures if it is predicted in advance. Predicting the yield loss from an imminent drought is crucial for stakeholders. One of the reliable ways for such prediction is using a plant physiology-based agricultural drought index, such as Agricultural Reference Index for Drought (ARID). This study developed ENSO phase-specific, ARID-based models for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to drought. The reasonable values of the drought sensitivity coefficients of the yield model for each ENSO phase (El Niño, La Niña, or Neutral) indicated that the yield models reflected reasonably well the phenomena of water stress decreasing the winter wheat yields in this region during different ENSO phases. The values of various goodness-of-fit measures used, including the Nash-Sutcliffe Index (0.54 to 0.67), the Willmott Index (0.82 to 0.89), and the percentage error (20 to 26), indicated that the yield models performed fairly well at predicting the ENSO phase-specific loss of wheat yields from drought. This yield model may be useful for predicting yield loss from drought and scheduling irrigation allocation based on the phenological phase-specific sensitivity to drought as impacted by ENSO. 展开更多
关键词 ARID drought drought index ENSO El Niño Growth-Stage Model Phenological-Phase Prediction Semi-Arid Wheat Yield Loss
下载PDF
Projected Changes of Palmer Drought Severity Index under an RCP8.5 Scenario 被引量:2
11
作者 ZHOU Tian-Jun HONG Tao 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第5期273-278,共6页
The potential change of drought measured by the Palmer Drought Severity Index (PDSI) is projected by using a coupled climate system model under a Representative Pathway 8.5 (RCP8.5) scenario.The PDSI changes calcu... The potential change of drought measured by the Palmer Drought Severity Index (PDSI) is projected by using a coupled climate system model under a Representative Pathway 8.5 (RCP8.5) scenario.The PDSI changes calculated by two potential evapotranspiration algorithms are compared.The algorithm of Thomthwaite equation overestimates the impact of surface temperature on evaporation and leads to an unrealistic increasing of drought frequency.The PM algorithm based on the Penman-Monteith equation is physically reasonably and necessary for climate change projections.The Flexible Global Ocean-Atmosphere-Land System model,Spectral Version 2 (FGOALS-s2) projects an increasing trend of drought during 2051-2100 in tropical and subtropical areas of North and South America,North Africa,South Europe,Southeast Asia,and the Australian continent.Both the moderate drought (PDSI <-2) and extreme drought (PDSI <-4) areas show statistically significant increasing trends under an RCP8.5 scenario.The uncertainty in the model projection is also discussed. 展开更多
关键词 palmer drought severity index PROJECTION RCP8.5 scenario climate model
下载PDF
A drought resistance index to select drought resistant plant species based on leaf water potential measurements 被引量:4
12
作者 SayedJamaleddin KHAJEDDIN SayedHamid MATINKHAH Zahra JAFARI 《Journal of Arid Land》 SCIE CSCD 2019年第4期623-635,共13页
The water deficit in arid and semi-arid regions is the primary limiting factor for the development of urban greenery and forestation. In addition, planting the species that consume low levels of water is useful in ari... The water deficit in arid and semi-arid regions is the primary limiting factor for the development of urban greenery and forestation. In addition, planting the species that consume low levels of water is useful in arid and semi-arid regions that have poor water management measures. Leaf water potential(Ψ) is a physiological parameter that can be used to identify drought resistance in various species. Indeed, Ψ is one of the most important properties of a plant that can be measured using a pressure chamber. Drought avoiding or drought resistant species have a lower Ψ than plants that use normal or high levels of water. To determine drought resistance of species that are suitable for afforestation in arid urban regions, we evaluated twenty woody species in the Isfahan City, central Iran. The experimental design was random split-split plots with five replications. The species were planted outdoor in plastic pots and then subjected to treatments that consisted of two soil types and five drip irrigation regimes. To evaluate the resistance of each species to drought, we used the Ψ and the number of survived plants to obtain the drought resistance index(DRI). Then, cluster analysis, dendrogram, and similarity index were used to group the species using DRI. Result indicates that the evaluated species were classified into five groups:(1) high water consuming species(DRI>–60 MPa);(2) above normal water consuming species(–60 MPa≥DRI>–90 MPa);(3) normal water consuming species(–90 MPa≥DRI>–120 MPa);(4) semi-drought resistant species(–120 MPa≥DRI>–150 MPa);and(5) drought resistant species(DRI≤–150 MPa). According to the DRI, Salix babylonica L., Populus alba L., and P. nigra L. are high water consuming species, Platanus orientalis L. and Albizia julibrissin Benth are normal water consuming species, and Quercus infectoria Oliv. and Olea europaea L. can be considered as drought resistant species. 展开更多
关键词 drought RESISTANT species drought resistance index forestation leaf WATER potential WATER DEFICIT
下载PDF
The concept and statistical method of drought resistance index in crops 被引量:1
13
作者 兰巨生 胡福顺 张景瑞 《华北农学报》 CSCD 北大核心 1993年第S2期69-73,共5页
There is evindence showing that stress susceptibility index(SSI)(1一Yd/Yp)/(1—(?)d/(?)p)used as a measure of drought resistance of crop on the field is an altered form of droughtresistance coefficient(DRC)(Yd/Yp).The... There is evindence showing that stress susceptibility index(SSI)(1一Yd/Yp)/(1—(?)d/(?)p)used as a measure of drought resistance of crop on the field is an altered form of droughtresistance coefficient(DRC)(Yd/Yp).The correlative coefficient SSI and DRC is r=-1.Therefore,the SSI doesn’t improve the defect of the DRC.After two years experiments per-formed by using thirty winter wheat varieties as trial materials,the concept of drought resistanceindex in crops was put forward.Its expressing equation is:the yield in drylan×drought resis-tance coefficient/average yield in dryland.It makes the drought resistance coefficient(physicalindex)correlate well with the yield in dryland(agronomy index)and is suitable for breeder. 展开更多
关键词 CROP drought resistance index CLUSTER analysis
下载PDF
Using leaf area index(LAI) to assess vegetation response to drought in Yunnan province of China 被引量:4
14
作者 Kwangchol KIM WANG Ming-cheng +3 位作者 Sailesh RANJITKAR LIU Su-hong XU Jian-chu Robert J.ZOMER 《Journal of Mountain Science》 SCIE CSCD 2017年第9期1863-1872,共10页
Climatic extremes such as drought have becoming a severe climate-related problem in many regions all over the world that can induce anomalies in vegetation condition. Growth and CO2 uptake by plants are constrained to... Climatic extremes such as drought have becoming a severe climate-related problem in many regions all over the world that can induce anomalies in vegetation condition. Growth and CO2 uptake by plants are constrained to a large extent by drought.Therefore, it is important to understand the spatial and temporal responses of vegetation to drought across the various land cover types and different regions. Leaf area index(LAI) derived from Global Land Surface Satellite(GLASS) data was used to evaluate the response of vegetation to drought occurrence across Yunnan Province, China(2001-2010). The meteorological drought was assessed based on Standardized Precipitation Index(SPI)values. Pearson's correlation coefficients between LAI and SPI were examined across several timescales within six sub-regions of the Yunnan. Further, the drought-prone area was identified based on LAI anomaly values. Lag and cumulative effects of lack of precipitation on vegetation were evident, with significant correlations found using 3-, 6-, 9-and 12-month timescale. We found 9-month timescale has higher correlations compared to another timescale.Approximately 29.4% of Yunnan's area was classified as drought-prone area, based on the LAI anomaly values. Most of this drought-prone area was distributed in the mountainous region of Yunnan.From the research, it is evident that GLASS LAI can be effectively used as an indicator for assessing drought conditions and it provide valuable information for drought risk defense and preparedness. 展开更多
关键词 MODIS Leaf area index distribution Standardized Precipitation index(SPI) drought Yunnan
下载PDF
Spatial and Temporal Characteristics of Drought and Flood in Quanzhou Based on Standardized Precipitation Index (SPI) in Recent 55 Years 被引量:2
15
作者 Dehe Liu Jingfei You +2 位作者 Qijie Xie Yuanyuan Huang Huajun Tong 《Journal of Geoscience and Environment Protection》 2018年第8期25-37,共13页
To analyze the characteristics of drought and flood variations in Quanzhou during recent 55 years, the standardized precipitation index (SPI) and Empirical Orthogonal Function (EOF) and Rotated Empirical Orthogonal Fu... To analyze the characteristics of drought and flood variations in Quanzhou during recent 55 years, the standardized precipitation index (SPI) and Empirical Orthogonal Function (EOF) and Rotated Empirical Orthogonal Function (REOF) were calculated by using the monthly precipitation data from 6 meteorological bureaus across Quanzhou for 1960-2014. Results showed that: 1) During 1960-2014, the drought and flood showed Periodic variation characteristics in Quanzhou, the specific period of frequent drought was 1963-1972, 1977-1986 and 2009-2011, and the specific period of frequent flood was 1961-1962, 1972-1975, 1990-1992 and 1997-2007;the drought and flood did not have significant tendency of variation in Spring and Summer, and the drought and flood showed a non-significant downward trend in Autumn and Winter. 2) The drought and flood variation had relatively consistent trend in Quanzhou, but there was a big difference on the northwest mountainous area, the middle semi-mountainous area and the southeast coast area in some periods. 3) The precipitation cell and distribution in every season were Nan’an and Anxi, but there was a big difference in rainfall less area: it was Yongchun and Dehua in Spring, Chongwu and Jinjiang in Summer, Chongwu in Autumn, Dehua and Chongwu in Winter. 展开更多
关键词 Standardized Precipitation index drought and FLOOD Empirical ORTHOGONAL FUNCTION (EOF) Rotated Empirical ORTHOGONAL FUNCTION (REOF)
下载PDF
Evaluation of Spatial-Temporal Variability of Drought Events in Iran Using Palmer Drought Severity Index and Its Principal Factors (through 1951-2005) 被引量:1
16
作者 Mojtaba Zoljoodi Ali Didevarasl 《Atmospheric and Climate Sciences》 2013年第2期193-207,共15页
Intensity and variability of droughts are considered inIranduring the period 1951 to 2005. Four variables are considered: the Palmer Drought Severity Index (PDSI), the soil moisture, the temperature and the precipitat... Intensity and variability of droughts are considered inIranduring the period 1951 to 2005. Four variables are considered: the Palmer Drought Severity Index (PDSI), the soil moisture, the temperature and the precipitation (products used for the analysis are downloaded from the NCAR website). Link with the climatic indexLa Ninais also considered (NOAA downloadable products is used). The analysis is based on basic statistical approaches (correlation, linear regressions and Principal Component Analysis). The analysis shows that PDSI is highly correlated to the soil moisture and poorly correlated to the other variables—although the temperature in the warm season shows high correlation to the PDSI and that a severe drought was experienced during 1999-2002 inthe country. 展开更多
关键词 Intensity and VARIABILITY of droughtS Palmer drought SEVERITY index (PDSI) Basic Statistical Approaches La NINA Iran
下载PDF
Monitoring vegetation drought in the nine major river basins of China based on a new developed Vegetation Drought Condition Index
17
作者 ZHAO Lili LI Lusheng +4 位作者 LI Yanbin ZHONG Huayu ZHANG Fang ZHU Junzhen DING Yibo 《Journal of Arid Land》 SCIE CSCD 2023年第12期1421-1438,共18页
The effect of global climate change on vegetation growth is variable.Timely and effective monitoring of vegetation drought is crucial for understanding its dynamics and mitigation,and even regional protection of ecolo... The effect of global climate change on vegetation growth is variable.Timely and effective monitoring of vegetation drought is crucial for understanding its dynamics and mitigation,and even regional protection of ecological environments.In this study,we constructed a new drought index(i.e.,Vegetation Drought Condition Index(VDCI))based on precipitation,potential evapotranspiration,soil moisture and Normalized Difference Vegetation Index(NDVI)data,to monitor vegetation drought in the nine major river basins(including the Songhua River and Liaohe River Basin,Haihe River Basin,Yellow River Basin,Huaihe River Basin,Yangtze River Basin,Southeast River Basin,Pearl River Basin,Southwest River Basin and Continental River Basin)in China at 1-month–12-month(T1–T12)time scales.We used the Pearson's correlation coefficients to assess the relationships between the drought indices(the developed VDCI and traditional drought indices including the Standardized Precipitation Evapotranspiration Index(SPEI),Standardized Soil Moisture Index(SSMI)and Self-calibrating Palmer Drought Severity Index(scPDSI))and the NDVI at T1–T12 time scales,and to estimate and compare the lag times of vegetation response to drought among different drought indices.The results showed that precipitation and potential evapotranspiration have positive and major influences on vegetation in the nine major river basins at T1–T6 time scales.Soil moisture shows a lower degree of negative influence on vegetation in different river basins at multiple time scales.Potential evapotranspiration shows a higher degree of positive influence on vegetation,and it acts as the primary influencing factor with higher area proportion at multiple time scales in different river basins.The VDCI has a stronger relationship with the NDVI in the Songhua River and Liaohe River Basin,Haihe River Basin,Yellow River Basin,Huaihe River Basin and Yangtze River Basin at T1–T4 time scales.In general,the VDCI is more sensitive(with shorter lag time of vegetation response to drought)than the traditional drought indices(SPEI,scPDSI and SSMI)in monitoring vegetation drought,and thus it could be applied to monitor short-term vegetation drought.The VDCI developed in the study can reveal the law of unclear mechanisms between vegetation and climate,and can be applied in other fields of vegetation drought monitoring with complex mechanisms. 展开更多
关键词 vegetation drought Vegetation drought Condition index(VDCI) Normalized Difference Vegetation index(NDVI) vegetation dynamics climate change China
下载PDF
An improved temperature vegetation dryness index(iTVDI) and its applicability to drought monitoring 被引量:3
18
作者 YANG Ruo-wen WANG Hai +2 位作者 HU Jin-ming CAO Jie YANG Yu 《Journal of Mountain Science》 SCIE CSCD 2017年第11期2284-2294,共11页
Using Moderate Resolution Imaging Spectroradiometer(MODIS) data from the dry season during 2010–2012 over the whole Yunnan Province, an improved temperature vegetation dryness index(iTVDI), in which a parabolic dry-e... Using Moderate Resolution Imaging Spectroradiometer(MODIS) data from the dry season during 2010–2012 over the whole Yunnan Province, an improved temperature vegetation dryness index(iTVDI), in which a parabolic dry-edge equation replaces the traditional linear dry-edge equation, was developed, to reveal the regional drought regime in the dry season. After calculating the correlation coefficient, root-mean-square error, and standard deviation between the iTVDI and observed topsoil moisture at 10 and 20 cm for seven sites, the effectiveness of the new index in depicting topsoil moisture conditions was verified. The drought area indicated by iTVDI mapping was then compared with the drought-affected area reported by the local government. The results indicated that the iTVDI can monitor drought more accurately than the traditional TVDI during the dry season in Yunnan Province. Using iTVDI facilitates drought warning and irrigation scheduling, and the expectation is that this new index can be broadly applied in other areas. 展开更多
关键词 IMPROVED TEMPERATURE vegetationdryness index (iTVDI) drought monitoring Lineardry-edge EQUATION Parabolic dry-edge EQUATION Soilmoisture
下载PDF
APPLICATION OF VEGETATION INDEX OF METEOROLOGICAL SATELLITE IN DROUGHT ANALYSIS OF NINGXIA
19
作者 Wang Lianxi Hu Wendong Zhang Feng Ningxia Meteorological Observatory, Yinchuan 750002, China 《干旱区资源与环境》 CSCD 1993年第Z1期379-381,共3页
There are five channels in NOAA-N series meteorological satellites. The channel No.1 is exactly located in the absorbtion band of vegetation, the channel No. 2 in the strong re-flection one. Therefore the two channels... There are five channels in NOAA-N series meteorological satellites. The channel No.1 is exactly located in the absorbtion band of vegetation, the channel No. 2 in the strong re-flection one. Therefore the two channels are suitable for monitoring and analysing vegeta-tion. To make certain mathematical value combination of two channels and specify its val- 展开更多
关键词 METEOROLOGICAL SATELLITE VEGETATION index drought CONDITION Analysis
下载PDF
Spatio-Temporal Analysis of Drought in the North-Eastern Coastal Region of Vietnam Using the Standardized Precipitation Index (SPI)
20
作者 Nguyen Van Tuan Nguyen Van Hieu +5 位作者 Nguyen Khac Bang Pham Hoang Hai Nguyen Khanh Van Le Vinh Ha Tran Thi Hoa Lê Trọng Hiếu 《Atmospheric and Climate Sciences》 CAS 2023年第2期175-200,共26页
Spatio-temporal analysis of drought provides valuable information for drought management and damage mitigation. In this study, the Standardized Precipitation Index at the time scale of 6 months (SPI-6) is selected to ... Spatio-temporal analysis of drought provides valuable information for drought management and damage mitigation. In this study, the Standardized Precipitation Index at the time scale of 6 months (SPI-6) is selected to reflect drought conditions in the North-Eastern coastal region of Vietnam. The drought events and their characteristics from 1981 to 2019 are detected at 9 meteorological stations and 10 Chirps rainfall stations. The spatio-temporal variation of drought in the study region is analyzed on the basis of the number, duration, severity, intensity, and peak of the detected drought events at the 19 stations. The results show that from 1981 to 2019 the drought events mainly occurred with 1-season duration and moderate intensity and peak. The number, duration, severity, and peak of the drought events were the greatest in the period 2001-2010 and were the smallest in the period 2011-2019. Among the 19 stations, the drought duration tends to decrease at 11 stations, increase at 7 stations, and has a slight variant at 1 station;the drought severity tends to decrease at 14 stations, increase at 4 stations, and has not a significant trend at 1 station;the drought intensity tends to decrease at 17 stations, increase at 1 station, and has a slight variant at 1 station;and the drought peak tends to decrease at 18 stations and increase at 1 station. 展开更多
关键词 Spatio-Temporal Analysis of drought Standardized Precipitation index (SPI) drought Characteristics
下载PDF
上一页 1 2 165 下一页 到第
使用帮助 返回顶部