期刊文献+
共找到30,387篇文章
< 1 2 250 >
每页显示 20 50 100
Development and Application of a Power Law Constitutive Model for Eddy Current Dampers
1
作者 Longteng Liang Zhouquan Feng +2 位作者 Hongyi Zhang Zhengqing Chen Changzhao Qian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2403-2419,共17页
Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tot... Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tothe widespread implementation of ECD technology, and there is limited availability of finite element analysis (FEA)software capable of accurately modeling the behavior of ECDs. This study addresses these issues by developing anewconstitutivemodel that is both easily understandable and user-friendly for FEAsoftware. By utilizing numericalresults obtained from electromagnetic FEA, a novel power law constitutive model is proposed to capture thenonlinear behavior of ECDs. The effectiveness of the power law constitutive model is validated throughmechanicalproperty tests and numerical seismic analysis. Furthermore, a detailed description of the application process ofthe power law constitutive model in ANSYS FEA software is provided. To facilitate the preliminary design ofECDs, an analytical derivation of energy dissipation and parameter optimization for ECDs under harmonicmotionis performed. The results demonstrate that the power law constitutive model serves as a viable alternative forconducting dynamic analysis using FEA and optimizing parameters for ECDs. 展开更多
关键词 Eddy current damper constitutive model finite element analysis vibration control power law constitutive model
下载PDF
A macro-mesoscopic constitutive model for porous and cracked rock under true triaxial conditions
2
作者 Li Qian Zuguo Mo +4 位作者 Jianhai Zhang Xianglin Xing Ru Zhang Tianzhi Yao Yunpeng Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3080-3098,共19页
The complex mechanical and damage mechanisms of rocks are intricately tied to their diverse mineral compositions and the formation of pores and cracks under external loads.Numerous rock tests reveal a complex interpla... The complex mechanical and damage mechanisms of rocks are intricately tied to their diverse mineral compositions and the formation of pores and cracks under external loads.Numerous rock tests reveal a complex interplay between the closure of porous defects and the propagation of induced cracks,presenting challenges in accurately representing their mechanical properties,especially under true triaxial stress conditions.This paper proposes a conceptualization of rock at the mesoscopic level as a two-phase composite,consisting of a bonded medium matrix and frictional medium inclusions.The bonded medium is characterized as a mesoscopic elastic material,encompassing various minerals surrounding porous defects.Its mechanical properties are determined using the mixed multi-inclusion method.Transformation of the bonded medium into the frictional medium occurs through crack extension,with its elastoplastic properties defined by the DruckerePrager yield criterion,accounting for hardening,softening,and extension.MorieTanaka and Eshelby’s equivalent inclusion methods are applied to the bonded and frictional media,respectively.The macroscopic mechanical properties of the rock are derived from these mesoscopic media.Consequently,a True Triaxial Macro-Mesoscopic(TTMM)constitutive model is developed.This model effectively captures the competitive effect and accurately describes the stress-deformation characteristics of granite.Utilizing the TTMM model,the strains resulting from porous defect closure and induced crack extension are differentiated,enabling quantitative determination of the associated damage evolution. 展开更多
关键词 MICROMECHANICS Macroemesoscopic HOMOGENIZATION constitutive model Competitive effect
下载PDF
Inverse design of mechanical metamaterial achieving a prescribedconstitutive curve
3
作者 Zongliang Du Tanghuai Bian +4 位作者 Xiaoqiang Ren Yibo Jia Shan Tang Tianchen Cui Xu Guo 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期16-22,共7页
Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between di... Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between different patterns under deformation.However,the related inverse design problem is quite challenging,due to the lack of appropriate mathematical formulation and the convergence issue in the post-buckling analysis of intermediate designs.In this work,periodic unit cells are explicitly described by the moving morphable voids method and effectively analyzed by eliminating the degrees of freedom in void regions.Furthermore,by exploring the Pareto frontiers between error and cost,an inverse design formulation is proposed for unit cells.This formulation aims to achieve a prescribed constitutive curve and is validated through numerical examples and experimental results.The design approach presented here can be extended to the inverse design of other types of mechanical metamaterials with prescribed nonlinear effective properties. 展开更多
关键词 METAMATERIAL Pattern-transformation constitutive curve Inverse design
下载PDF
An improved strain-softening constitutive model of granite considering the effect of crack deformation
4
作者 Yapeng Li Qiang Zhang +2 位作者 Qiuxin Gu Peinan Wu Binsong Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1202-1215,共14页
This paper presents an improved strain-softening constitutive model considering the effect of crack deformation based on the triaxial cyclic loading and unloading test results.The improved model assumes that total str... This paper presents an improved strain-softening constitutive model considering the effect of crack deformation based on the triaxial cyclic loading and unloading test results.The improved model assumes that total strain is a combination of plastic,elastic,and crack strains.The constitutive relationship between the crack strain and the stress was further derived.The evolutions of mechanical parameters,i.e.strength parameters,dilation angle,unloading elastic modulus,and deformation parameters of crack,with the plastic strain and confining pressure were studied.With the increase in plastic strain,the cohesion,friction angle,dilation angle,and crack Poisson's ratio initially increase and subsequently decrease,and the unloading elastic modulus and the crack elastic modulus nonlinearly decrease.The increasing confining pressure enhances the strength and unloading elastic modulus,and decreases the dilation angle and Poisson's ratio of the crack.The theoretical triaxial compressive stress-strain curves were compared with the experimental results,and they present a good agreement with each other.The improved constitutive model can well reflect the nonlinear mechanical behavior of granite. 展开更多
关键词 STRAIN-SOFTENING Crack deformation effect Plastic shear strain constitutive model
下载PDF
Fatigue properties and damage constitutive model of salt rock based on CT scanning
5
作者 Junbao Wang Xiao Liu +3 位作者 Qiang Zhang Xinrong Liu Zhanping Song Shijin Feng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期245-259,共15页
To investigate the macroscopic fatigue properties and the mesoscopic pore evolution characteristics of salt rock under cyclic loading,fatigue tests under different upper-limit stresses were carried out on salt rock,an... To investigate the macroscopic fatigue properties and the mesoscopic pore evolution characteristics of salt rock under cyclic loading,fatigue tests under different upper-limit stresses were carried out on salt rock,and the mesoscopic pore structures of salt rock before and after fatigue tests and under different cycle numbers were measured using CT scanning instrument.Based on the test results,the effects of the cycle number and the upper-limit stress on the evolution of cracks,pore morphology,pore number,pore volume,pore size,plane porosity,and volume porosity of salt rock were analyzed.The failure path of salt rock specimens under cyclic loading was analyzed using the distribution law of plane porosity.The damage variable of salt rock under cyclic loading was defined on basis of the variation of volume porosity with cycle number.In order to describe the fatigue deformation behavior of salt rock under cyclic loading,the nonlinear Burgers damage constitutive model was further established.The results show that the model established can better reflect the whole development process of fatigue deformation of salt rock under cyclic loading. 展开更多
关键词 Salt rock Cyclic loading CT scanning Mesoscopic pore evolution constitutive model
下载PDF
Theoretical investigation on axial cyclic performance of monopile in sands using interface constitutive models
6
作者 Pan Zhou Jingpei Li +2 位作者 Kaoshan Dai Stefan Vogt Seyedmohsen Miraei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2645-2662,共18页
Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing c... Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses. 展开更多
关键词 PILES Cyclic degradation Load-transfer models Interface constitutive model Semi-analytical solution Model tests
下载PDF
Nonlinear constitutive models of rock structural plane and their applications
7
作者 Wenlin Feng Shuangjian Niu +1 位作者 Chunsheng Qiao Dujian Zou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期790-806,共17页
Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this ... Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this paper,mechanical properties,constitutive theory,and numerical application of structural plane are studied by a combination method of laboratory tests,theoretical derivation,and program development.The test results reveal the change laws of various mechanical parameters under different roughness and normal stress.At the pre-peak stage,a non-stationary model of shear stiffness is established,and threedimensional empirical prediction models for initial shear stiffness and residual stage roughness are proposed.The nonlinear constitutive models are established based on elasto-plastic mechanics,and the algorithms of the models are developed based on the return mapping algorithm.According to a large number of statistical analysis results,empirical prediction models are proposed for model parameters expressed by structural plane characteristic parameters.Finally,the discrete element method(DEM)is chosen to embed the constitutive models for practical application.The running programs of the constitutive models have been compiled into the discrete element model library.The comparison results between the proposed model and the Mohr-Coulomb slip model show that the proposed model can better describe nonlinear changes at different stages,and the predicted shear strength,peak strain and shear stiffness are closer to the test results.The research results of the paper are conducive to the accurate evaluation of structural plane in rock engineering. 展开更多
关键词 Structural plane Engineering stability ROUGHNESS Normal stress Elasto-plastic constitutive model Discrete element method
下载PDF
Time-domain dynamic constitutive model suitable for mucky soil site seismic response
8
作者 Dong Qing Chen Su +2 位作者 Jin Liguo Zhou Zhenghua Li Xiaojun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期1-13,共13页
Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modu... Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modulus and combining the dynamic skeleton curve and the damping degradation coefficient,the constitutive equation of the logarithmic dynamic skeleton can be obtained,which considers the damping effect in a soil dynamics problem.Based on the finite difference method and the multi-transmitting boundary condition,a 1D site seismic response analysis program called Soilresp1D has been developed herein and used to analyze the time-domain seismic response in three types of sites.At the same time,this study also provides numerical simulation results based on the hyperbolic constitutive model and the equivalent linear method.The results verify the rationality of the new soil dynamic constitutive model.It can analyze the mucky soil site nonlinear seismic response,reflecting the deformation characteristics and damping effect of the silty soil.The hysteresis loop area is more extensive,and the residual strain is evident. 展开更多
关键词 seismic response time-domain dynamic constitutive model logarithmic dynamic skeleton dampening effect mucky soil
下载PDF
A thermodynamics-based three-scale constitutive model for partially saturated granular materials
9
作者 Jianqiu Tian Enlong Liu Yuancheng Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1813-1831,共19页
A three-scale constitutive model for unsaturated granular materials based on thermodynamic theory is presented.The three-scale yield locus,derived from the explicit yield criterion for solid matrix,is developed from a... A three-scale constitutive model for unsaturated granular materials based on thermodynamic theory is presented.The three-scale yield locus,derived from the explicit yield criterion for solid matrix,is developed from a series of discrete interparticle contact planes.The three-scale yield locus is sensitive to porosity changes;therefore,it is reinterpreted as a corresponding constitutive model without phenomenological parameters.Furthermore,a water retention curve is proposed based on special pore morphology and experimental observations.The features of the partially saturated granular materials are well captured by the model.Under wetting and isotropic compression,volumetric compaction occurs,and the degree of saturation increases.Moreover,the higher the matric suction,the greater the strength,and the smaller the volumetric compaction.Compared with the phenomenological Barcelona basic model,the proposed three-scale constitutive model has fewer parameters;virtually all parameters have clear physical meanings. 展开更多
关键词 Unsaturated granular material Unsaturated porous material GEOMATERIALS Multi-scale constitutive model Water retention curve PLASTICITY
下载PDF
Parameter calibration of the tensile-shear interactive damage constitutive model for sandstone failure
10
作者 Yun Shu Zheming Zhu +4 位作者 Meng Wang Weiting Gao Fei Wang Duanying Wan Yuntao Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1153-1174,共22页
The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The bas... The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models. 展开更多
关键词 Damage constitutive model Parameter calibration Rock modeling SANDSTONE Dynamic impact load Tensile-shear interactive damage(TSID)model
下载PDF
Damage constitutive model of lunar soil simulant geopolymer under impact loading
11
作者 Hanyan Wang Qinyong Ma Qianyun Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1059-1071,共13页
Lunar base construction is a crucial component of the lunar exploration program,and considering the dynamic characteristics of lunar soil is important for moon construction.Therefore,investigating the dynamic properti... Lunar base construction is a crucial component of the lunar exploration program,and considering the dynamic characteristics of lunar soil is important for moon construction.Therefore,investigating the dynamic properties of lunar soil by establishing a constitutive relationship is critical for providing a theoretical basis for its damage evolution.In this paper,a split Hopkinson pressure bar(SHPB)device was used to perform three sets of impact tests under different pressures on a lunar soil simulant geopolymer(LSSG)with sodium silicate(Na_(2)SiO_(3))contents of 1%,3%,5%and 7%.The dynamic stressestrain curves,failure modes,and energy variation rules of LSSG under different pressures were obtained.The equation was modified based on the ZWT viscoelastic constitutive model and was combined with the damage variable.The damage element obeys the Weibull distribution and the constitutive equation that can describe the mechanical properties of LSSG under dynamic loading was obtained.The results demonstrate that the dynamic compressive strength of LSSG has a marked strain-rate strengthening effect.Na_(2)SiO_(3) has both strengthening and deterioration effects on the dynamic compressive strength of LSSG.As Na_(2)SiO_(3) grows,the dynamic compressive strength of LSSG first increases and then decreases.At a fixed air pressure,5%Na_(2)SiO_(3) had the largest dynamic compressive strength,the largest incident energy,the smallest absorbed energy,and the lightest damage.The ZWT equation was modified according to the stress response properties of LSSG and the range of the SHPB strain rate to obtain the constitutive equation of the LSSG,and the model’s correctness was confirmed. 展开更多
关键词 Lunar soil simulant geopolymer(LSSG) Split hopkinson pressure bar(SHPB)test constitutive model Energy analysis Failure mode
下载PDF
Drucker-Prager Elasto-Plastic Constitutive Model for Methane Hydrate-Bearing Sediment 被引量:2
12
作者 孙翔 郭晓霞 +1 位作者 邵龙潭 李洋辉 《Transactions of Tianjin University》 EI CAS 2016年第5期441-450,共10页
A constitutive model for methane hydrate-bearing sediment(MHBS)is essential for the analysis of mechanical response of MHBS to the change of hydrate saturation caused by gas extraction. A new elasto-plastic constituti... A constitutive model for methane hydrate-bearing sediment(MHBS)is essential for the analysis of mechanical response of MHBS to the change of hydrate saturation caused by gas extraction. A new elasto-plastic constitutive model is built in order to simulate the mechanical behavior of MHBS in this paper. This model represents more significant mechanical properties of MHBS such as bonding, higher stiffness, softening and stress-strain nonlinear relationship. The bonding behavior can be described by use of a parameter related to mechanical hydrate saturation. Higher stiffness can be modeled by the introduction of hydrate saturation into traditional expression of soil stiffness. Softening can be controlled by a function describing the relationship between cohesion and bonding structure factor. Dilatancy can be estimated by establishing the relationship between the lateral strain and axial strain. Meanwhile, the hypothesis of isotropic expanding is applied to the calculation of the volumetric strain. The stress-strain curves under different hydrate saturation conditions predicted by the proposed model are in good agreement with the test data. All the coefficients can be easily obtained by the triaxial test of MHBS. 展开更多
关键词 constitutive model methane hydrate-bearing SEDIMENT yield surface bonding
下载PDF
基于Drucker-Prager屈服准则及加卸载判据的圆形隧道围岩-支护作用机制探讨 被引量:2
13
作者 叶泰龙 喻勇 《西南科技大学学报》 CAS 2023年第1期61-66,83,共7页
隧道围岩-支护相互作用机制是隧道力学中的基础理论,为了准确描述围岩与支护结构对隧道应力变形的影响,假定围岩本构模型为理想弹塑性模型,采用适用于岩土材料的Drucker-Prager屈服准则,考虑加卸载判据,证明了圆形隧道的开挖过程是一个... 隧道围岩-支护相互作用机制是隧道力学中的基础理论,为了准确描述围岩与支护结构对隧道应力变形的影响,假定围岩本构模型为理想弹塑性模型,采用适用于岩土材料的Drucker-Prager屈服准则,考虑加卸载判据,证明了圆形隧道的开挖过程是一个加载过程,支护过程是卸载过程。通过大型有限元仿真软件Abaqus计算了平面应变情况下圆形隧道开挖与支护过程的弹塑性解。数值分析结果与理论公式结果相吻合,表明开挖的过程是解除内压、增大压差的加载过程,支护过程为施加内压、减小压差的卸载过程。支护后的围岩应力增量和位移增量符合弹性规律,且支护过后的应力等于开挖后的应力减去弹性应力。支护过程的卸载效应使得开挖过程产生的塑性区变成了残余变形区。研究结果可为工程应用提供参考。 展开更多
关键词 圆形隧道 drucker-prager屈服准则 加卸载判据 围岩-支护相互作用 数值模拟
下载PDF
Constitutive modelling of fabric effect on sand liquefaction 被引量:2
14
作者 Zhiwei Gao Dechun Lu +1 位作者 Yue Hou Xin Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期926-936,共11页
Sand liquefaction under static and dynamic loading can cause failure of embankments,slopes,bridges and other important infrastructure.Sand liquefaction in the seabed can also cause submarine landslides and tsunamis.Fa... Sand liquefaction under static and dynamic loading can cause failure of embankments,slopes,bridges and other important infrastructure.Sand liquefaction in the seabed can also cause submarine landslides and tsunamis.Fabric anisotropy related to the internal soil structure such as particle orientation,force network and void space is found to have profound influence on sand liquefaction.A constitutive model accounting for the effect of anisotropy on sand liquefaction is proposed.Evolution of fabric anisotropy during loading is considered according to the anisotropic critical state theory for sand.The model has been validated by extensive test results on Toyoura sand with different initial densities and stress states.The effect of sample preparation method on sand liquefaction is qualitatively analysed.The model has been used to investigate the response of a sand ground under earthquake loading.It is shown that sand with horizontal bedding plane has the highest resistance to liquefaction when the sand deposit is anisotropic,which is consistent with the centrifuge test results.The initial degree of fabric anisotropy has a more significant influence on the liquefaction resistance.Sand with more anisotropic fabric that can be caused by previous loading history or compaction methods has lower liquefaction resistance. 展开更多
关键词 SAND ANISOTROPY LIQUEFACTION Finite element modelling constitutive model
下载PDF
基于Drucker-Prager/Cap模型的Ti-30Cu粉末轧制过程模拟
15
作者 孙振振 彭文飞(导师) +2 位作者 MOLIAR Oleksandr 李贺 邵熠羽 《机械工程材料》 CAS CSCD 北大核心 2023年第3期92-97,102,共7页
对钛和铜质量比为7∶3的Ti-30Cu混合粉末进行单轴压缩、巴西圆盘和模压试验,获得该粉末Drucker-Prager/Cap本构参数与相对密度的关系;利用Abaqus软件建立粉末轧制模型,研究喂料高度对板料相对密度的影响,并进行了试验验证;采用该模型研... 对钛和铜质量比为7∶3的Ti-30Cu混合粉末进行单轴压缩、巴西圆盘和模压试验,获得该粉末Drucker-Prager/Cap本构参数与相对密度的关系;利用Abaqus软件建立粉末轧制模型,研究喂料高度对板料相对密度的影响,并进行了试验验证;采用该模型研究了辊缝宽度、轧速对Ti-30Cu合金板料相对密度的影响。结果表明:在辊缝宽度为1 mm、轧速为10 mm·s^(-1)条件下,随着喂料高度由150 mm增加到300 mm,板料的相对密度增大,模拟结果与试验结果基本吻合,最大相对误差为2.15%,验证了轧制模型的有效性;随着喂料高度的增加、辊缝宽度或轧速的减小,板料的相对密度增大。 展开更多
关键词 Ti-30Cu粉末 drucker-prager/Cap本构模型 粉末轧制模型 相对密度
下载PDF
Study on hot deformation behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy using a combination of strain-compensated Arrhenius constitutive model and finite element simulation method 被引量:2
16
作者 Li Hu Mengwei Lang +4 位作者 Laixin Shi Mingao Li Tao Zhou Chengli Bao Mingbo Yang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期1016-1028,共13页
Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s... Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s^(-1)by using a Gleeble-1500D thermo mechanical simulator.Metallographic characterization on samples deformed to true strain of 0.70 illustrates the occurrence of flow localization and/or microcrack at deformation conditions of 673 K/0.01 s^(-1),673 K/1 s^(-1)and 698 K/1 s^(-1),indicating that these three deformation conditions should be excluded during hot working of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.Based on the measured true stress-strain data,the strain-compensated Arrhenius constitutive model was constructed and then incorporated into UHARD subroutine of ABAQUS software to study hot deformation process of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.By comparison with measured force-displacement curves,the predicted results can describe well the rheological behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy,verifying the validity of finite element simulation of hot compression process with this complicated constitutive model.Numerical results demonstrate that the distribution of values of material parameters(α,n,Q and ln A)within deformed sample is inhomogeneous.This issue is directly correlated to the uneven distribution of equivalent plastic strain due to the friction effect.Moreover,at a given temperature the increase of strain rate would result in the decrease of equivalent plastic strain within the central region of deformed sample,which hinders the occurrence of dynamic recrystallization(DRX). 展开更多
关键词 Mg-RE-Zn alloy Hot deformation Microstructure evolution constitutive model Finite element simulation
下载PDF
A rate-dependent constitutive model for saturated frozen soil considering local breakage mechanism 被引量:1
17
作者 Pan Wang Enlong Liu +1 位作者 Bin Zhi Bingtang Song 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2458-2474,共17页
A rate-dependent constitutive model for saturated frozen soil is vital in frozen soil mechanics,especially when simultaneously describing the nonlinearity,dilatancy and strain-softening characteristics.The distributio... A rate-dependent constitutive model for saturated frozen soil is vital in frozen soil mechanics,especially when simultaneously describing the nonlinearity,dilatancy and strain-softening characteristics.The distribution of the non-uniform strain rate of saturated frozen soil at the meso-scale due to the local icecementation breakage is described by a newly binary-medium-based homogenization equation.Based on the field-equation-based approach of the meso-mechanics theory,the interaction expression of the strain rate at macro-and meso-scale is derived,which can give the strain rate concentration tensor at different crushed degrees.With the thermodynamics and empirical assumption,a breakage ratio in the rate-dependent form is determined.This overcomes the limitations of the existing binary-medium-based models that are difficult to simulate rate-dependent mechanical response.Based on these assumptions,a newly binary-medium-based rate-dependent model is proposed considering both the ice bond breakage and material composition characteristics of saturated frozen soil.The proposed constitutive model has been validated by the test results on frozen soils with different temperatures and strain rates. 展开更多
关键词 Binary-medium-based model Rate-dependency Frozen soil Grain debonding effect Multi-scale constitutive model
下载PDF
FRP约束混凝土柱的修正Drucker-Prager模型
18
作者 张璐珂 张峰 赵国浩 《复合材料科学与工程》 CAS 北大核心 2023年第10期60-68,86,共10页
Drucker-Prager(DP)模型中,摩擦角和内聚力相关的参数决定屈服、硬化软化准则,与膨胀角相关的参数决定流动法则。通过对试验样本数据的分析,确定了摩擦角的影响因素,将摩擦角定义为塑性应变的函数;进而由DP模型的屈服准则更新了内聚力... Drucker-Prager(DP)模型中,摩擦角和内聚力相关的参数决定屈服、硬化软化准则,与膨胀角相关的参数决定流动法则。通过对试验样本数据的分析,确定了摩擦角的影响因素,将摩擦角定义为塑性应变的函数;进而由DP模型的屈服准则更新了内聚力模型。通过计算侧向塑性应变与轴向塑性应变的比率,建立了考虑约束刚度比的膨胀角模型。基于ABAQUS中的USDFLD子程序对修正后DP模型参数实现自定义,结果表明提出的修正后的DP模型可以很好地预测FRP约束混凝土柱的应力-应变响应,具有一定的精度。 展开更多
关键词 FRP约束混凝土 drucker-prager模型 摩擦角 内聚力 膨胀角 USDFLD子程序 复合材料
下载PDF
Rheological mechanical properties and its constitutive relation of soft rock considering influence of clay mineral composition and content
19
作者 Xuebin Li Xuesheng Liu +4 位作者 Yunliang Tan Ai Chen Honglei Wang Xin Wang Shenglong Yang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期62-76,共15页
Rheological mechanical properties of the soft rock are afected signifcantly by its main physical characteristics-clay mineral.In this study,taking the mudstone on the roof and foor in four typical mining regions as th... Rheological mechanical properties of the soft rock are afected signifcantly by its main physical characteristics-clay mineral.In this study,taking the mudstone on the roof and foor in four typical mining regions as the research object,frstly,the clay mineral characteristic was analyzed by the X-ray difraction test.Subsequently,rheological mechanical properties of mudstone samples under diferent confning pressures are studied through triaxial compression and creep tests.The results show that the clay mineral content of mudstone in diferent regions is diferent,which leads to signifcant diferences in its rheological properties,and these diferences have a good correlation with the content of montmorillonite and illite-montmorillonite mixed layer.Taking the montmorillonite content as an example,compared with the sample with 3.56%under the lower stress level,the initial creep deformation of the sample with 11.19%increased by 3.25 times,the viscosity coefcient and longterm strength decreased by 80.59%and 53.94%,respectively.Furthermore,based on the test results,the damage variation is constructed considering the montmorillonite content and stress level,and the M–S creep damage constitutive model of soft rock is established.Finally,the test results can be ftted with determination coefcients ranging from 0.9020 to 0.9741,which proves that the constitutive relation can refect the infuence of the clay mineral content in the samples preferably.This study has an important reference for revealing the long-term stability control mechanism of soft rock roadway rich in clay minerals. 展开更多
关键词 Clay mineral Physical characteristic CREEP DAMAGE constitutive model
下载PDF
Constitutive model for Ya'an mudstone based on mesoscopic breakage mechanism
20
作者 HE Yun-yong CHEN Cong +5 位作者 WANG Fu-ming GUO Cheng-chao XIANG Bo YU Di LIU En-long DING Chun 《Journal of Mountain Science》 SCIE CSCD 2023年第4期1159-1169,共11页
The slope stability of Ya’an expressway in Sichuan dominated by mudstone strata,is influenced greatly by both the mechanical properties and stressstrain relationship of mudstone.In this paper,the mechanical propertie... The slope stability of Ya’an expressway in Sichuan dominated by mudstone strata,is influenced greatly by both the mechanical properties and stressstrain relationship of mudstone.In this paper,the mechanical properties of the Ya’an mudstone samples under triaxial compression conditions were studied,based on an established constitutive model under the framework of breakage mechanics to simulate the mechanical properties of mudstone.Firstly,triaxial compression tests and SEM tests at the confining pressures of 0.5 MPa,1.0 MPa,and 2.0 MPa were carried out on the mudstone samples,and it was found that the mudstone sample undergoes strain softening and dilatancy followed by the volumetric compaction.Then,based on analysis on the breakage mechanism of the above test results,we idealized the mudstone sample as a binary medium material consisting of the bonded elements and frictional elements,of which the bonded elements are composed of solid matrix and pores,and the frictional elements are composed of broken aggregates.During the loading process,the cementation between clay minerals and non-clay minerals in the mudstone sample is first destroyed,leading to the formation of micro-cracks within the particle aggregate,that is,the bonded elements are gradually damaged during the loading process and gradually turned into the frictional elements,and the two jointly bear the external load.The bonded elements are composed of mudstone matrix and pores,which have the cementitious characteristics of mudstone,and the frictional elements are composed of the broken aggregate with the frictional characteristics of the broken particles.Based on the homogenization theory,the constitutive model for the mudstone is established,and the determining method for model parameters is also given.Finally,the results of the triaxial compression tests of the mudstone samples are predicted by the constitutive model proposed here,which can reflect the main mechanical properties of the mudstone samples. 展开更多
关键词 MUDSTONE Breakage mechanism constitutive model Strain softening Binary medium model
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部