[Objectives]This study was conducted to investigate the effects of slow-release nitrogen fertilizer on dry matter accumulation and translocation of summer maize.[Methods]With Zhoudan 9 as the test variety,six differen...[Objectives]This study was conducted to investigate the effects of slow-release nitrogen fertilizer on dry matter accumulation and translocation of summer maize.[Methods]With Zhoudan 9 as the test variety,six different treatment were set up:blank control(CK1),slow-release urea 75 kg/hm^(2)(C1),slow-release urea 150 kg/hm^(2)(C2),slow-release urea 225 kg/hm^(2)(C3),slow-release urea 300 kg/hm^(2)(C4)and ordinary urea 300 kg/hm^(2)(CK2),to study the change law of dry matter accumulation and translocation in summer maize.[Results]Treatment slow-release urea 225 kg/hm^(2)(C4)showed summer maize yield,dry matter translocation between organs,grain contribution rate and proportion of grain dry matter in the full ripe stage higher than other treatments.Considering the weight loss and cost factors,slow-release urea 225 kg/hm^(2)(C3)could be recommended as the fertilizing amount for summer maize.[Conclusions]This study provides theoretical reference for rational selection of fertilizers for reducing fertilizer application and increasing fertilizer efficiency,and for production of summer maize in Shajiang black soil region.展开更多
The high water content of corn grain at harvest is a challenge in Northeast China,where the growing season is short.Using a dehydrating agent before harvest can help corn seeds dehydrate quickly.The dry matter accumul...The high water content of corn grain at harvest is a challenge in Northeast China,where the growing season is short.Using a dehydrating agent before harvest can help corn seeds dehydrate quickly.The dry matter accumulation and nutrient quality of maize were systematically studied by field experiments and instrumental analysis using maize varieties of different maturities as test materials.The results showed that the accumulation of dry matter was enhanced by an increased dosage of a dehydrating agent.When the dehydrating agent dosage reached 1800 mL•hm-2,the dry matter accumulation of early-maturing varieties increased by 24.1 g,and the water content decreased by 8.08%.Different maize varieties were treated with the same dose;early-maturing varieties showed significant effects on grain dry matter accumulation,and kernel dry matter accumulation increased by 7%.The effects of different doses on grain dehydration were obvious,and the effects on different maize varieties varied.Medium-ripening maize varieties showed the most significant effect,with a 19.5%reduction in water content.The effects of dehydrating agent doses on maize yield,grain nutrient quality and seed germination rate were not significant.Therefore,a dehydrating agent promoted the accumulation of dry matter in grain and accelerated the rapid dehydration.展开更多
In this paper, the effect of different fertilizer treatments on the main indexes of growth and development and dry matter accumulation of perennial mulberry, which is cut and pruned in summer, were studied with ‘3414...In this paper, the effect of different fertilizer treatments on the main indexes of growth and development and dry matter accumulation of perennial mulberry, which is cut and pruned in summer, were studied with ‘3414’ field experiment design. The results showed that N, P, and K at proper amounts could promote mulberry growth and development, improve its dry matter content, increase its dry matter accumulation. The effects of N, P, K on leaf yield per plant were respectively expressed as follows: N2 N3 N1 N0 , P2 P1 P3 P0 , K2 K1 K3 K0 . It can be concluded that the recommended fertilizer amounts of dry matter accumulations in mulberry leaf were 694.36 kg/hm2 of N, 198.15 kg/hm2 of P, and 274.26 kg/hm2 of K and the dry matter achieved the maximum at 8 045.04 kg/hm2 . The recommended fertilizer amounts of accumulated dry matter in branch were 1 000.05 kg/hm2 of N, 242.04 kg/hm2 of P, and 218.01 kg/hm 2 of K, and the dry matter achieved the maximum at 5 969.05 kg/hm2 . The recommended fertilizer amount in young shoots were 883.76 kg/hm2 of N, 204.48 kg/hm2 of P and 426.59 kg/hm2 of K and dry matter achieved the maximum at 1 410.24 kg/hm2 . This paper could provide reference for the construction of highly-qualified mulberry field in Sichuan hilly area.展开更多
[Objective] This study was conducted to investigate the effects of application modes of potassium fertilizer on sorghum grain yield and dry matter accumulation. [Method] Sorghum hybrids Jiza 305 and Jiza 87 were used ...[Objective] This study was conducted to investigate the effects of application modes of potassium fertilizer on sorghum grain yield and dry matter accumulation. [Method] Sorghum hybrids Jiza 305 and Jiza 87 were used as materials, and four treatments were designed (Ko: applying potassium at 0 kg/hm^2, K1: applying potassium as base fertilizer at 120 kg/hm^2, K2: applying potassium as base fertilizer at 90 kg/hm^2 and as additional fertilizer at 30 kg/hm^2, and K3: applying potassium as base fertilizer at 60 kg/hm^2 and as additional fertilizer at 60 kg/hm^2) to investigate the effects of application modes of potassium fertilizer on dry matter accumulation and grain yield, so as to determine the best application mode of potassium fertilizer. [Result] The results showed that after the application of potassium, the leaf area, dry matter accumulation, grain starch content, yield and economic coefficient of sorghum plants were improved. The leaf area values of the two sorghum cultivars showed the order of K0〈K1〈K2〈K3. The economic coefficients were in order of K0〈 K3〈K2〈K1. The amounts of dry matter accumulation, grain starch contents and grain yields showed the order of K0〈K3〈K1〈K2. For Jiza 305, the grain yields of K1, K2 and K3 were higher than that of Ko by 9.3%, 15.6% and 9.3%, respectively. As to Jiza 87, the grain yields of K1, K2 and K3 were higher than that of K0 by 8.1%, 12.5% and 8.1%, respectively. [Conclusion] Comprehensively, the best application method was 90 kg of potassium as base fertilizer and 30 kg of potassium as additional fertilizer per hectare.展开更多
In order to select the suitable soil for transplanting tobacco in Hunan to- bacco growing areas, pot experiment was conducted to study the effects of different transplanting nutdent soils on the growth and dry matter ...In order to select the suitable soil for transplanting tobacco in Hunan to- bacco growing areas, pot experiment was conducted to study the effects of different transplanting nutdent soils on the growth and dry matter accumulation of tobacco. The results indicated that the treatments of transplanting with nutrition soils were better than the control group. For the underground part, transplanting nutrient soil could effectively improve the root activity of tobacco plants, and increase root volume, root surface area, total root length, as well as the number of root tips and the number of root branches. For the aboveground part, transplanting nutrient soil could remarkably improve the plant height, stem girth, leaf number and maximum leaf area, and could simultaneously significantly increase the dry matter accumulation. By comparison, peat + mushroom residue + saw dust + straw powder + bicchar + root promoting nutrient solution was the most effective treatment, and the effect of sole application of nutrient solution was limited. In conclusion, transplanting with nutrition soil could effectively promote the growth and dry matter accumulation of tobacco.展开更多
[Objective] The aim was to discuss the group dry matter accumulation and economic benefits under the patterns of intercropping maize (Zea mays L.) with soy-bean [Glycine max (L.) Merril ]. [Methods] Zhengdan-958 a...[Objective] The aim was to discuss the group dry matter accumulation and economic benefits under the patterns of intercropping maize (Zea mays L.) with soy-bean [Glycine max (L.) Merril ]. [Methods] Zhengdan-958 and Luhuang-1 were used as the testing breeds to study the effects of intercropping patterns on dry matter accumulation and transportation of maize and soybean in Huang-huai-hai. [Results] For maize, the dry matter accumulation amounts per hectare of intercropping was significant higher than that of the monoculture patterns, especial y after silking, when it reached extremely level; while for soybean, the dry matter accumulation amounts before flowering and after flowering of monocropping were al significantly higher than that of the intercropping patterns. For both maize and soybean, the transfer amounts of monocropping were al significantly or extremely significantly higher than that of intercropping; and the transfer ratio of maize intercropping was 0.59% higher than that of maize monocropping, while for soybean, it was 4.74% higher. Fitted dry matter accumulation with Logistic equation, it showed that the difference in maximum dry matter accumulation rate between maize monocropping and intercropping reached significant level, while for soybean, the maximum dry matter accumulation rate and its appearance time as wel as duration time between intercropping and monocropping were al reached significant level. The total land equivalent ratio of intercropping was 1.30. From yield and output value, the total yield of intercropping were 10.97 t/hm2, 0.64% and 326.85% higher than monocropping of maize and soy-bean, respectively. The total output value of intercropping was 25 796.23 yuan/hm2, respectively 12.67% and 104.68% higher than of maize and soybean monocropping. [Conclusion] The study lays a basis for improving grain yield and economic benefits.展开更多
[Objective] To understand the effect of nitrogen application on dry matter accumulation and allocation dynamics in broomcorn millet. [Method] The accumulation and distribution of dry matter were studied using cultivar...[Objective] To understand the effect of nitrogen application on dry matter accumulation and allocation dynamics in broomcorn millet. [Method] The accumulation and distribution of dry matter were studied using cultivars Jin Shu 7 and Huang Mizi at different levels of nitrogen fertilizer at the jointing stage. [Result] The results showed that increasing N application led to the increase of green leaf area and the delay of leaf senescence, which was beneficial to the accumulation of dry matter.Appropriate nitrogen application(90 kg/hm2) could coordinate the translocation rate of dry matter among different plant parts, thereby enhancing the yield of broomcorn millet; among different organs, the contribution rate of stem to kernel was greater than that of leaf to kernel; there was obvious correlation between dry matter and yield. For Jin Shu 7, leaf area and dry weight of spike showed significant negative correlation with yield. [Conclusion] The formation of grain yield of broomcorn millet involved the accumulation and allocation of dry matter, the appropriate amount of nitrogen application(90 kg/hm2) could improve the rates of translocation and contribution of dry matter, thereby promoting the yield of broomcorn millet.展开更多
Three different chlorophyll-deficient rice isogenic lines chl,fgl and pgl,and their recurrent parent zhefu802 (zf802) were used to study effects of leaf color on photosynthesis,dry matter accumulation,yield,and qual...Three different chlorophyll-deficient rice isogenic lines chl,fgl and pgl,and their recurrent parent zhefu802 (zf802) were used to study effects of leaf color on photosynthesis,dry matter accumulation,yield,and quality in early season indica rice.Analysis showed that the chlorophyll (Chl.) a/b ratio of isogenic lines chl-8,pgl and fgl was 5.35,10.00 and 15.46,respectively,among them,line fgl had higher leaf area index (LAI),higher net photosynthetic rate and higher grain-filling rate than its recurrent parent zf802 at the later period of grain filling stage;while LAI,net photosynthetic rate and dry matter accumulated in lines chl-8 and pgl were lower than in zf802.Differences were found in the grain yield and quality among chlorophyll deficient isogenic lines,lines fgl,chl-8 and zf802 had similar grain yield,which was significantly higher than that of pgl;the highest milling quality was observed in isogenic line fgl,with relatively high protein content.This study showed that isogenic line fgl would become a unique material for the development of high yield rice with high grain quality because of its slow aging process and relative steady grain-filling rate.展开更多
The effects of calcium application rate on dry matter accumulation and yield of peanut were studied under high-yielding field condition. The variety used for the study was Tang A8252( Spanish peanut). The results show...The effects of calcium application rate on dry matter accumulation and yield of peanut were studied under high-yielding field condition. The variety used for the study was Tang A8252( Spanish peanut). The results showed that number of full fruit,dry weight per plant,kernel yield,and pod yield all increased with calcium application increased,and they decreased when calcium application rate was more than150 kg/ha. Both the height of main stem and the length of side shoot decreased with calcium application increased. Therefore,to obtain the optimal agronomic character index and the highest yield benefit,the suggested calcium application rate would be 150 kg/ha for peanut.展开更多
The drought in spring leads to the lack of soil water, which influents sprout and bud of crops, which furthermore affects growth and yield of crops. Studying the technology integration of bed-irrigating sowing, the me...The drought in spring leads to the lack of soil water, which influents sprout and bud of crops, which furthermore affects growth and yield of crops. Studying the technology integration of bed-irrigating sowing, the mending irrigation of seedling stage and the effect of water-saving of ridge plotted field, analyzing the finger of yield and dry matter accumulation, water-saving technology integration have good effects on water-saving, water storage and increasing moisture on soil and enhancement of soybean yield.展开更多
Ten (10) cowpea varieties exposed to alpha nano spin were evaluated during the 2019 cropping season to access the role of alpha nano spin in their growth and dry matter accumulation at the Botanical garden of Federal ...Ten (10) cowpea varieties exposed to alpha nano spin were evaluated during the 2019 cropping season to access the role of alpha nano spin in their growth and dry matter accumulation at the Botanical garden of Federal University, Lafia. A Randomized Complete Block Design (RCBD) with four replications was used. The fourth replication was used for the destructive sampling over time. The seed <span style="font-family:;" "="">was</span><span style="font-family:;" "=""> exposed to alpha nano spin before planting at 0, 20, 40 and 60 minutes respectively. Results of the study showed that the varieties differed significantly with respect to morphological traits studied (P < 0.05) as exposed to the alpha nanoparticles. Morphological trait</span><span style="font-family:;" "="">s</span><span style="font-family:;" "=""> such as vine length, number of leaves and above ground stems were significantly influenced by alpha nano</span><span style="font-family:;" "=""> </span><span style="font-family:;" "="">spin bombardment. 40</span><span style="font-family:;" "=""> </span><span style="font-family:;" "="">mins alpha nano spin resulted in maximum accumulation of dry matter, leaf area and leaf area index. The traits evaluated were stable under alpha nano spin exposure, suggesting that they could be useful indices in creating genetic variability in each of the varieties.</span>展开更多
[Objective] This study aimed to investigate the effects of different planting and irrigation patterns on water consumption characteristics and dry matter produc- tion and allocation of winter wheat. [Method] With high...[Objective] This study aimed to investigate the effects of different planting and irrigation patterns on water consumption characteristics and dry matter produc- tion and allocation of winter wheat. [Method] With high-yield winter wheat cultivar Jimai 22 as the experimental material, field experiment was conducted during 2008- 2010. A total of 3 planting patterns were designed, uniform row, wide-narrow row and furrow. Under each planting pattern, total four irrigation patterns were designed, no irrigation (Wo), irrigation at jointing state (Wl), irrigation at jointing and anthesis stages (W2) and irrigation at jointing, anthesis and milking stages (W3), and the irri- gation amount per treatment was all 60 mm. [Result] Under the three planting pat- terns, with the increased irrigation amount, the total water consumption of the exper- imental field increased; the proportion of irrigation in the total water consumption in- creased, and that of soil water consumption in the total water consumption de- creased significantly. Compared with W0 treatment, various irrigation treatments sig- nificantly increased the post-anthesis dry matter accumulation in wheat plants; with the increased irrigation amount, the grain yield under the three planting patterns all increased, while the water use efficiency (WUE) decreased. Under the same irriga- tion conditions, compared with other two planting patterns, furrow planting increased the total water consumption of the experimental field, increased the proportion of soil water consumption in the total water consumption, and improved the WUE and wheat grain yield. [Conclusion] Under the experimental conditions, considering both wheat grain yield and WUE, furrow planting with moderately deficit irrigation at joint- ing and anthesis stages is more suitable for the winter wheat production in North China Plain.展开更多
Mulching can effectively maintain soil moisture;color of mulching film affects soil water storage capacity and further promote crop growth to improve grain yield.Field experiment was conducted to study effects of diff...Mulching can effectively maintain soil moisture;color of mulching film affects soil water storage capacity and further promote crop growth to improve grain yield.Field experiment was conducted to study effects of different film colors on dry matter accumulation(DMA)and grain yield of oil flax.Results showed that white plastic film mulching could increase leaf area,chlorophyll content and DMA.DMA of white film mulching and micro-ridge with soil covering was 53.0%higher than that of CK,and 7.8%higher than that of black film mulching.Mulching method also influenced DMA.Micro-ridge alone increased it by 13.7%than flat cultivation and soil covering improved another 7.6%under white film mulching.Both white and black film mulching with microridge could significantly improve grain yield.Black film mulching with micro-ridge and soil covering,white film mulching with micro-ridge and no soil covering significantly increased capsule number per plant,1,000-grain weight and grain yield of oil flax,compared with CK.Grain yield increased 29.0%and 28.9%respectively.These results indicated that the above mulching methods were suitable for high yield cropping pattern in dry-farming regions.展开更多
A feld study was set up to compare dry matter accumulation and grain yield of 3 different types of flm mulching, namely FFC (full flm muched on tiny ridges covered with soil), PFC (full flm muched covered with soil...A feld study was set up to compare dry matter accumulation and grain yield of 3 different types of flm mulching, namely FFC (full flm muched on tiny ridges covered with soil), PFC (full flm muched covered with soil), and PF (full flm muched with no cover). The experiment was laid out in a complete random design with 3 replications at north-west (34°40′N, 105°06′E) of China. This study determined that (1) flm mulching treatment increased leaf area and dry matter accumulation of oil fax in semi-arid areas; (2) accu-mulation of dry matter under PFC treatment was markedly higher than other treatments except anthesis stage; (3) average grain yield of oil fax under flm mulching treatment was 52.67%-60.33% higher than fat plot without mulched or ridge (CK) treatment; (4) grain yield of oil fax was substantially correlated with plant height, grain number and 1,000 kernels weight. This study demonstrated that flm mulching has signifcant effects on crop grain yield improvement in the northwest of China.展开更多
The influences of climate change on the velocity of dry matter accumulation of spring wheat and numerical simulation in arid and semi-arid regions under the condition of rainfalled agriculture or irrigated agriculture...The influences of climate change on the velocity of dry matter accumulation of spring wheat and numerical simulation in arid and semi-arid regions under the condition of rainfalled agriculture or irrigated agriculture were quantitatively analysed by using the field experimental data. The results showed that the velocity of dry matter accumulation of spring wheat was declined with the temperature rising. The accumulating velocity would be declined 4.9 - 14.0% in irrigated agriculture area when air temperature rose in 0.5-4.0℃ ; but in rainfalled agriculture regions, the velocity of dry matter accumulation would be increased with the soil moisture increasing when air temperature rose in 0.5-1.0℃ and decreased when the air temperature rose in 3.0-4.0 ℃ .展开更多
Global climate change is characterized by asymmetric warming,i.e.,greater temperature increases in winter,spring,and nighttime than in summer,autumn,and daytime.Field experiments were conducted using four wheat cultiv...Global climate change is characterized by asymmetric warming,i.e.,greater temperature increases in winter,spring,and nighttime than in summer,autumn,and daytime.Field experiments were conducted using four wheat cultivars,namely‘Yangmai 18’(YM18),‘Sumai 188’(SM188),‘Yannong 19’(YN19),and‘Annong 0711’(AN0711),in the two growing seasons of 2019-2020 and 2020-2021,with passive night warming during different periods in the early growth stage.The treatments were night warming during the tillering-jointing(NW_(T-J)),jointing-booting(NWJ-B),and booting-anthesis(NWB-A)stages,with ambient temperature(NN)as the control.The effects of night warming during different stages on wheat yield formation were investigated by determining the characteristics of dry matter accumulation and translocation,as well as sucrose and starch accumulation in wheat grains.The wheat yields of all four cultivars were significantly higher in NW_(T-J)than in NN in the 2-year experiment.The yield increases of semi-winter cultivars YN19 and AN0711 were greater than those of spring cultivars YM18 and SM188.Treatment NW_(T-J)increased wheat yield mainly by increasing the 1,000-grain weight and the number of fertile spikelets,and it increased dry matter accumulation in various organs of wheat at the anthesis and maturity stages by increasing the growth rate at the vegetative growth stage.The flag leaf and spike showed the largest increases in dry matter accumulation.NW_(T-J)also increased the grain sucrose and starch contents in the early and middle grain-filling stages,promoting yield formation.Overall,night warming between the tillering and jointing stages increased the pre-anthesis growth rate,and thus,wheat dry matter production,which contributed to an increase in wheat yield.展开更多
Soil drought occurrence during dry season has been the main constraint, besides prolonged flooding during rainy season, in increasing cropping intensity and rice productivity in tropical riparian wetland. Use of droug...Soil drought occurrence during dry season has been the main constraint, besides prolonged flooding during rainy season, in increasing cropping intensity and rice productivity in tropical riparian wetland. Use of drought tolerant rice genotype might be a suitable option for overcoming such problem. This study focused on the effects of gradual soil drying during early vegetative growth stage on morphological and physiological traits of five Oryza glaberrima genotypes, namely RAM12, RAM14, RAM59, RAM97 and RAM101, and two Oryza sativa subsp japonica genotypes, i.e. Koshihikari and Minamihatamochi. The plants were subjected to 6 d of gradual soil drying condition from 15 days after transplanting(DAT) to 20 DAT, and were allowed to recover until 22 DAT. Gradual soil drying reduced plant growth as indicated by dry mass accumulation. Drought reduced stomatal conductance and increased leaf rolling score of all the genotypes. All the genotypes showed comparable response on stomatal conductance, but O. glaberrima genotypes performed higher in leaf rolling recovery. Meanwhile, O. sativa genotypes decreased total leaf area and specific leaf area, but increased specific leaf weight in order to avoid further damages due to drought stress. Drought tolerance mechanisms in RAM101, RAM12, RAM59 and RAM14 were associated with leaf morpho-physiological responses, root traits and dry biomass accumulation.展开更多
Late spring cold(LSC) occurred in the reproductive period of wheat impairs spike and floret differentiation during the reproductive period,when young spikelets are very cold-sensitive.However,under LSC,the responses o...Late spring cold(LSC) occurred in the reproductive period of wheat impairs spike and floret differentiation during the reproductive period,when young spikelets are very cold-sensitive.However,under LSC,the responses of wheat spikelets at various positions,leaves,and stems and the interactions between them at physiological levels remain unclear.In the present study,two-year treatments at terminal spikelet stage under two temperatures(2 C,-2 C) and durations(1,2,and 3 days) were imposed in an artificial climate chamber to compare the effects of LSC on grain number and yield in the wheat cultivars Yannong 19(YN19,cold-tolerant) and Xinmai 26(XM26,cold-sensitive).The night temperature regimes were designed to reproduce natural temperature variation.LSC delayed plant growth and inhibited spike and floret differentiation,leading to high yield losses in both cultivars.LSC reduced dry matter accumulation(DMA,g) in spikes,stems,and leaves,reducing the DMA ratios of the spike to leaf and spike to stem.Plant cell wall invertase(CWINV) activity increased in upper and basal spikelets in YN19,whereas CWINV increased in middle spikelets in XM26.Under LSC,soluble sugar and glucose were transported and distributed mainly in upper and basal spikelets for glume and rachis development,so that spike development was relatively complete in YN19,whereas the upper and basal spikelets were severely damaged and most of the glumes in middle spikelets were relatively completely developed in XM26,resulting in pollen abortion mainly in upper and basal spikelets.The development of glumes and rachides was influenced and grain number per spike was decreased after LSC,with kernels present mainly in middle spikelets.Overall,reduced total DMA and dry matter partitioning to spikes under LSC results in poor spikelet development,leading to high losses of grain yield.展开更多
The purpose of this study was to identify the physiological mechanism underlying the effects of high temperature and waterlogging on summer maize.The stem development and yield of the maize hybrid Denghai 605 in respo...The purpose of this study was to identify the physiological mechanism underlying the effects of high temperature and waterlogging on summer maize.The stem development and yield of the maize hybrid Denghai 605 in response to high-temperature stress,waterlogging stress,and their combination applied for six days at the third-leaf,sixth-leaf,and tasseling stages were recorded.The combined stresses reduced lignin biosynthetic enzyme activity and lignin accumulation,leading to abnormal stem development.Reduction of the area and number of vascular bundles in stems led to reduced dry matter accumulation and allocation.Decreased grain dry weight at all three stages reduced grain yield relative to a control.In summary,high temperature,waterlogging,and their combined stress impaired stem development and grain yield of summer maize.The combined stresses were more damaging than either stress alone.展开更多
Post-anthesis photoassimilation is very important for wheat (Triticum aestivum L.) grain filling. The aim of the present study was to map quantitative trait loci (QTL) for post-anthesis dry matter accumulation (...Post-anthesis photoassimilation is very important for wheat (Triticum aestivum L.) grain filling. The aim of the present study was to map quantitative trait loci (QTL) for post-anthesis dry matter accumulation (DMA). A set of 120 doubled haploid (DH) lines, derived from winter wheat varieties Hanxuan 10 and Lumai 14, was grown under field conditions in two consecutive growing seasons during 2002-2004 in Beijing. Post-anthesis DMA per culm and related traits, including flag leaf greenness (FLG) and flag leaf weight (FLW; dry weight per flag leaf) at flowering, and grain weight per ear (GWE) were investigated. All traits segregated continuously in the DH population in both trials. The DMA was significantly and positively correlated with GWE, with the correlation coefficients being 0.79 and 0.66 in the 2002-2003 and 2003-2004 growing seasons (both P〈0.01), suggesting the importance of DMA in grain filling. Further correlation analysis showed that FLW was more closely correlated with DMA and GWE than FLG in both growing seasons, indicating that FLW was more important than FLG in influencing DMA and GWE. In total, 30 QTLs for these four traits were mapped and distributed on 10 chromosomes. Phenotypic variations explained by an individual QTL were in the range 5.8%-21.3%, 5.9%-17.2%, 5.1%-18.1%, and 5.6%-16.2% for FLG, FLW, DMA, and GWE, respectively. Eight QTLs for DMA were detected, of which four (on chromosome arms 2AS, 4BL, 5AS, and 7AS) were linked with QTLs for GWE; two (on chromosome arms 5BL and 7BL) coincided with QTLs for FLW. These results may provide useful information for developing marker-assisted selection for the improvement of DMA.展开更多
文摘[Objectives]This study was conducted to investigate the effects of slow-release nitrogen fertilizer on dry matter accumulation and translocation of summer maize.[Methods]With Zhoudan 9 as the test variety,six different treatment were set up:blank control(CK1),slow-release urea 75 kg/hm^(2)(C1),slow-release urea 150 kg/hm^(2)(C2),slow-release urea 225 kg/hm^(2)(C3),slow-release urea 300 kg/hm^(2)(C4)and ordinary urea 300 kg/hm^(2)(CK2),to study the change law of dry matter accumulation and translocation in summer maize.[Results]Treatment slow-release urea 225 kg/hm^(2)(C4)showed summer maize yield,dry matter translocation between organs,grain contribution rate and proportion of grain dry matter in the full ripe stage higher than other treatments.Considering the weight loss and cost factors,slow-release urea 225 kg/hm^(2)(C3)could be recommended as the fertilizing amount for summer maize.[Conclusions]This study provides theoretical reference for rational selection of fertilizers for reducing fertilizer application and increasing fertilizer efficiency,and for production of summer maize in Shajiang black soil region.
基金Supported by the Research and Development Plan of Applied Technology in Heilongjiang Province(GA19B104)。
文摘The high water content of corn grain at harvest is a challenge in Northeast China,where the growing season is short.Using a dehydrating agent before harvest can help corn seeds dehydrate quickly.The dry matter accumulation and nutrient quality of maize were systematically studied by field experiments and instrumental analysis using maize varieties of different maturities as test materials.The results showed that the accumulation of dry matter was enhanced by an increased dosage of a dehydrating agent.When the dehydrating agent dosage reached 1800 mL•hm-2,the dry matter accumulation of early-maturing varieties increased by 24.1 g,and the water content decreased by 8.08%.Different maize varieties were treated with the same dose;early-maturing varieties showed significant effects on grain dry matter accumulation,and kernel dry matter accumulation increased by 7%.The effects of different doses on grain dehydration were obvious,and the effects on different maize varieties varied.Medium-ripening maize varieties showed the most significant effect,with a 19.5%reduction in water content.The effects of dehydrating agent doses on maize yield,grain nutrient quality and seed germination rate were not significant.Therefore,a dehydrating agent promoted the accumulation of dry matter in grain and accelerated the rapid dehydration.
基金Supported by Science&Technology Innovation of Sichuan Characteristic AgricultureProvincial Breeding Key Project of the 12th Five Year Plan (No.2011yzgg-13-02-01)+2 种基金Sichuan Academy of Agricultural Sciences (2011LWJJ-008)Seed Industry Innovation and Transformation Project (2011JYGC10-027-02)Modern Agricultural Technology System Project (No.CARS-22)~~
文摘In this paper, the effect of different fertilizer treatments on the main indexes of growth and development and dry matter accumulation of perennial mulberry, which is cut and pruned in summer, were studied with ‘3414’ field experiment design. The results showed that N, P, and K at proper amounts could promote mulberry growth and development, improve its dry matter content, increase its dry matter accumulation. The effects of N, P, K on leaf yield per plant were respectively expressed as follows: N2 N3 N1 N0 , P2 P1 P3 P0 , K2 K1 K3 K0 . It can be concluded that the recommended fertilizer amounts of dry matter accumulations in mulberry leaf were 694.36 kg/hm2 of N, 198.15 kg/hm2 of P, and 274.26 kg/hm2 of K and the dry matter achieved the maximum at 8 045.04 kg/hm2 . The recommended fertilizer amounts of accumulated dry matter in branch were 1 000.05 kg/hm2 of N, 242.04 kg/hm2 of P, and 218.01 kg/hm 2 of K, and the dry matter achieved the maximum at 5 969.05 kg/hm2 . The recommended fertilizer amount in young shoots were 883.76 kg/hm2 of N, 204.48 kg/hm2 of P and 426.59 kg/hm2 of K and dry matter achieved the maximum at 1 410.24 kg/hm2 . This paper could provide reference for the construction of highly-qualified mulberry field in Sichuan hilly area.
文摘[Objective] This study was conducted to investigate the effects of application modes of potassium fertilizer on sorghum grain yield and dry matter accumulation. [Method] Sorghum hybrids Jiza 305 and Jiza 87 were used as materials, and four treatments were designed (Ko: applying potassium at 0 kg/hm^2, K1: applying potassium as base fertilizer at 120 kg/hm^2, K2: applying potassium as base fertilizer at 90 kg/hm^2 and as additional fertilizer at 30 kg/hm^2, and K3: applying potassium as base fertilizer at 60 kg/hm^2 and as additional fertilizer at 60 kg/hm^2) to investigate the effects of application modes of potassium fertilizer on dry matter accumulation and grain yield, so as to determine the best application mode of potassium fertilizer. [Result] The results showed that after the application of potassium, the leaf area, dry matter accumulation, grain starch content, yield and economic coefficient of sorghum plants were improved. The leaf area values of the two sorghum cultivars showed the order of K0〈K1〈K2〈K3. The economic coefficients were in order of K0〈 K3〈K2〈K1. The amounts of dry matter accumulation, grain starch contents and grain yields showed the order of K0〈K3〈K1〈K2. For Jiza 305, the grain yields of K1, K2 and K3 were higher than that of Ko by 9.3%, 15.6% and 9.3%, respectively. As to Jiza 87, the grain yields of K1, K2 and K3 were higher than that of K0 by 8.1%, 12.5% and 8.1%, respectively. [Conclusion] Comprehensively, the best application method was 90 kg of potassium as base fertilizer and 30 kg of potassium as additional fertilizer per hectare.
文摘In order to select the suitable soil for transplanting tobacco in Hunan to- bacco growing areas, pot experiment was conducted to study the effects of different transplanting nutdent soils on the growth and dry matter accumulation of tobacco. The results indicated that the treatments of transplanting with nutrition soils were better than the control group. For the underground part, transplanting nutrient soil could effectively improve the root activity of tobacco plants, and increase root volume, root surface area, total root length, as well as the number of root tips and the number of root branches. For the aboveground part, transplanting nutrient soil could remarkably improve the plant height, stem girth, leaf number and maximum leaf area, and could simultaneously significantly increase the dry matter accumulation. By comparison, peat + mushroom residue + saw dust + straw powder + bicchar + root promoting nutrient solution was the most effective treatment, and the effect of sole application of nutrient solution was limited. In conclusion, transplanting with nutrition soil could effectively promote the growth and dry matter accumulation of tobacco.
基金Supported by the National Transformation Project for Agriculture Science and Technology Achievements(2011GB2C300011)the National Science and Technology Funds for Agriculture during the Twelfth Five-year Plan(2011BAD35B06-4)~~
文摘[Objective] The aim was to discuss the group dry matter accumulation and economic benefits under the patterns of intercropping maize (Zea mays L.) with soy-bean [Glycine max (L.) Merril ]. [Methods] Zhengdan-958 and Luhuang-1 were used as the testing breeds to study the effects of intercropping patterns on dry matter accumulation and transportation of maize and soybean in Huang-huai-hai. [Results] For maize, the dry matter accumulation amounts per hectare of intercropping was significant higher than that of the monoculture patterns, especial y after silking, when it reached extremely level; while for soybean, the dry matter accumulation amounts before flowering and after flowering of monocropping were al significantly higher than that of the intercropping patterns. For both maize and soybean, the transfer amounts of monocropping were al significantly or extremely significantly higher than that of intercropping; and the transfer ratio of maize intercropping was 0.59% higher than that of maize monocropping, while for soybean, it was 4.74% higher. Fitted dry matter accumulation with Logistic equation, it showed that the difference in maximum dry matter accumulation rate between maize monocropping and intercropping reached significant level, while for soybean, the maximum dry matter accumulation rate and its appearance time as wel as duration time between intercropping and monocropping were al reached significant level. The total land equivalent ratio of intercropping was 1.30. From yield and output value, the total yield of intercropping were 10.97 t/hm2, 0.64% and 326.85% higher than monocropping of maize and soy-bean, respectively. The total output value of intercropping was 25 796.23 yuan/hm2, respectively 12.67% and 104.68% higher than of maize and soybean monocropping. [Conclusion] The study lays a basis for improving grain yield and economic benefits.
基金Supported by the Earmarked Fund for China Agriculture Research System(CARS-07-12.5-A12)
文摘[Objective] To understand the effect of nitrogen application on dry matter accumulation and allocation dynamics in broomcorn millet. [Method] The accumulation and distribution of dry matter were studied using cultivars Jin Shu 7 and Huang Mizi at different levels of nitrogen fertilizer at the jointing stage. [Result] The results showed that increasing N application led to the increase of green leaf area and the delay of leaf senescence, which was beneficial to the accumulation of dry matter.Appropriate nitrogen application(90 kg/hm2) could coordinate the translocation rate of dry matter among different plant parts, thereby enhancing the yield of broomcorn millet; among different organs, the contribution rate of stem to kernel was greater than that of leaf to kernel; there was obvious correlation between dry matter and yield. For Jin Shu 7, leaf area and dry weight of spike showed significant negative correlation with yield. [Conclusion] The formation of grain yield of broomcorn millet involved the accumulation and allocation of dry matter, the appropriate amount of nitrogen application(90 kg/hm2) could improve the rates of translocation and contribution of dry matter, thereby promoting the yield of broomcorn millet.
基金supported by the National Natural Science Foundation of China(30800674)
文摘Three different chlorophyll-deficient rice isogenic lines chl,fgl and pgl,and their recurrent parent zhefu802 (zf802) were used to study effects of leaf color on photosynthesis,dry matter accumulation,yield,and quality in early season indica rice.Analysis showed that the chlorophyll (Chl.) a/b ratio of isogenic lines chl-8,pgl and fgl was 5.35,10.00 and 15.46,respectively,among them,line fgl had higher leaf area index (LAI),higher net photosynthetic rate and higher grain-filling rate than its recurrent parent zf802 at the later period of grain filling stage;while LAI,net photosynthetic rate and dry matter accumulated in lines chl-8 and pgl were lower than in zf802.Differences were found in the grain yield and quality among chlorophyll deficient isogenic lines,lines fgl,chl-8 and zf802 had similar grain yield,which was significantly higher than that of pgl;the highest milling quality was observed in isogenic line fgl,with relatively high protein content.This study showed that isogenic line fgl would become a unique material for the development of high yield rice with high grain quality because of its slow aging process and relative steady grain-filling rate.
基金Supported by Liaoning Innovation Team Project of Peanut Industry of National Modern Agricultural Industry Technology System(2016007022)
文摘The effects of calcium application rate on dry matter accumulation and yield of peanut were studied under high-yielding field condition. The variety used for the study was Tang A8252( Spanish peanut). The results showed that number of full fruit,dry weight per plant,kernel yield,and pod yield all increased with calcium application increased,and they decreased when calcium application rate was more than150 kg/ha. Both the height of main stem and the length of side shoot decreased with calcium application increased. Therefore,to obtain the optimal agronomic character index and the highest yield benefit,the suggested calcium application rate would be 150 kg/ha for peanut.
基金Nature Science Fund Project in Heilongjiang Province (C2004-10)
文摘The drought in spring leads to the lack of soil water, which influents sprout and bud of crops, which furthermore affects growth and yield of crops. Studying the technology integration of bed-irrigating sowing, the mending irrigation of seedling stage and the effect of water-saving of ridge plotted field, analyzing the finger of yield and dry matter accumulation, water-saving technology integration have good effects on water-saving, water storage and increasing moisture on soil and enhancement of soybean yield.
文摘Ten (10) cowpea varieties exposed to alpha nano spin were evaluated during the 2019 cropping season to access the role of alpha nano spin in their growth and dry matter accumulation at the Botanical garden of Federal University, Lafia. A Randomized Complete Block Design (RCBD) with four replications was used. The fourth replication was used for the destructive sampling over time. The seed <span style="font-family:;" "="">was</span><span style="font-family:;" "=""> exposed to alpha nano spin before planting at 0, 20, 40 and 60 minutes respectively. Results of the study showed that the varieties differed significantly with respect to morphological traits studied (P < 0.05) as exposed to the alpha nanoparticles. Morphological trait</span><span style="font-family:;" "="">s</span><span style="font-family:;" "=""> such as vine length, number of leaves and above ground stems were significantly influenced by alpha nano</span><span style="font-family:;" "=""> </span><span style="font-family:;" "="">spin bombardment. 40</span><span style="font-family:;" "=""> </span><span style="font-family:;" "="">mins alpha nano spin resulted in maximum accumulation of dry matter, leaf area and leaf area index. The traits evaluated were stable under alpha nano spin exposure, suggesting that they could be useful indices in creating genetic variability in each of the varieties.</span>
基金Supported by Scientific and Technological Development Plan of Shandong Province(2014GNC113001)Open Fund for National Key Laboratory of Crop Biology(2014KF11)
文摘[Objective] This study aimed to investigate the effects of different planting and irrigation patterns on water consumption characteristics and dry matter produc- tion and allocation of winter wheat. [Method] With high-yield winter wheat cultivar Jimai 22 as the experimental material, field experiment was conducted during 2008- 2010. A total of 3 planting patterns were designed, uniform row, wide-narrow row and furrow. Under each planting pattern, total four irrigation patterns were designed, no irrigation (Wo), irrigation at jointing state (Wl), irrigation at jointing and anthesis stages (W2) and irrigation at jointing, anthesis and milking stages (W3), and the irri- gation amount per treatment was all 60 mm. [Result] Under the three planting pat- terns, with the increased irrigation amount, the total water consumption of the exper- imental field increased; the proportion of irrigation in the total water consumption in- creased, and that of soil water consumption in the total water consumption de- creased significantly. Compared with W0 treatment, various irrigation treatments sig- nificantly increased the post-anthesis dry matter accumulation in wheat plants; with the increased irrigation amount, the grain yield under the three planting patterns all increased, while the water use efficiency (WUE) decreased. Under the same irriga- tion conditions, compared with other two planting patterns, furrow planting increased the total water consumption of the experimental field, increased the proportion of soil water consumption in the total water consumption, and improved the WUE and wheat grain yield. [Conclusion] Under the experimental conditions, considering both wheat grain yield and WUE, furrow planting with moderately deficit irrigation at joint- ing and anthesis stages is more suitable for the winter wheat production in North China Plain.
基金financial supports provided by the National Natural Science Programs of China(31360315,31760363)the China Agriculture Research System of Construct Special(CARS-14-1-16)the Fuxi Outstanding Talent Cultivation Plan of Gansu Agricultural University(Gaufx-02J05)。
文摘Mulching can effectively maintain soil moisture;color of mulching film affects soil water storage capacity and further promote crop growth to improve grain yield.Field experiment was conducted to study effects of different film colors on dry matter accumulation(DMA)and grain yield of oil flax.Results showed that white plastic film mulching could increase leaf area,chlorophyll content and DMA.DMA of white film mulching and micro-ridge with soil covering was 53.0%higher than that of CK,and 7.8%higher than that of black film mulching.Mulching method also influenced DMA.Micro-ridge alone increased it by 13.7%than flat cultivation and soil covering improved another 7.6%under white film mulching.Both white and black film mulching with microridge could significantly improve grain yield.Black film mulching with micro-ridge and soil covering,white film mulching with micro-ridge and no soil covering significantly increased capsule number per plant,1,000-grain weight and grain yield of oil flax,compared with CK.Grain yield increased 29.0%and 28.9%respectively.These results indicated that the above mulching methods were suitable for high yield cropping pattern in dry-farming regions.
基金financial support provided by China Agriculture Research System of Construct Special (CARS-14-116)the National Natural Science Programs of China (31360315, 31460331)Fuxi Outstanding Talent Cultivation Plan of Gansu Agricultural University (Gaufx-02J05)
文摘A feld study was set up to compare dry matter accumulation and grain yield of 3 different types of flm mulching, namely FFC (full flm muched on tiny ridges covered with soil), PFC (full flm muched covered with soil), and PF (full flm muched with no cover). The experiment was laid out in a complete random design with 3 replications at north-west (34°40′N, 105°06′E) of China. This study determined that (1) flm mulching treatment increased leaf area and dry matter accumulation of oil fax in semi-arid areas; (2) accu-mulation of dry matter under PFC treatment was markedly higher than other treatments except anthesis stage; (3) average grain yield of oil fax under flm mulching treatment was 52.67%-60.33% higher than fat plot without mulched or ridge (CK) treatment; (4) grain yield of oil fax was substantially correlated with plant height, grain number and 1,000 kernels weight. This study demonstrated that flm mulching has signifcant effects on crop grain yield improvement in the northwest of China.
文摘The influences of climate change on the velocity of dry matter accumulation of spring wheat and numerical simulation in arid and semi-arid regions under the condition of rainfalled agriculture or irrigated agriculture were quantitatively analysed by using the field experimental data. The results showed that the velocity of dry matter accumulation of spring wheat was declined with the temperature rising. The accumulating velocity would be declined 4.9 - 14.0% in irrigated agriculture area when air temperature rose in 0.5-4.0℃ ; but in rainfalled agriculture regions, the velocity of dry matter accumulation would be increased with the soil moisture increasing when air temperature rose in 0.5-1.0℃ and decreased when the air temperature rose in 3.0-4.0 ℃ .
基金This work was supported by the Project of Natural Science Foundation of Anhui Province,China(2008085qc118)the National Natural Science Foundation of China(U19A2021)+1 种基金the Major Science and Technology Special Project of Anhui Province,China(S202003a06020035)the Jiangsu Collaborative Innovation Center for Modern Crop Production,China(JCIC-MCP).
文摘Global climate change is characterized by asymmetric warming,i.e.,greater temperature increases in winter,spring,and nighttime than in summer,autumn,and daytime.Field experiments were conducted using four wheat cultivars,namely‘Yangmai 18’(YM18),‘Sumai 188’(SM188),‘Yannong 19’(YN19),and‘Annong 0711’(AN0711),in the two growing seasons of 2019-2020 and 2020-2021,with passive night warming during different periods in the early growth stage.The treatments were night warming during the tillering-jointing(NW_(T-J)),jointing-booting(NWJ-B),and booting-anthesis(NWB-A)stages,with ambient temperature(NN)as the control.The effects of night warming during different stages on wheat yield formation were investigated by determining the characteristics of dry matter accumulation and translocation,as well as sucrose and starch accumulation in wheat grains.The wheat yields of all four cultivars were significantly higher in NW_(T-J)than in NN in the 2-year experiment.The yield increases of semi-winter cultivars YN19 and AN0711 were greater than those of spring cultivars YM18 and SM188.Treatment NW_(T-J)increased wheat yield mainly by increasing the 1,000-grain weight and the number of fertile spikelets,and it increased dry matter accumulation in various organs of wheat at the anthesis and maturity stages by increasing the growth rate at the vegetative growth stage.The flag leaf and spike showed the largest increases in dry matter accumulation.NW_(T-J)also increased the grain sucrose and starch contents in the early and middle grain-filling stages,promoting yield formation.Overall,night warming between the tillering and jointing stages increased the pre-anthesis growth rate,and thus,wheat dry matter production,which contributed to an increase in wheat yield.
基金funded by the Program of the United Graduate School of Agricultural Sciences, Kagoshima Universitysupported by Program Penelitian Unggulan Profesi Universitas Sriwijaya (Grant No. 0006/UN9/SK.LP2M.PT/2018)+1 种基金Program PMDSU (Grant No. 093/SP2H/LT/DRPM/IV/2018)Enhancing International Publication Program by Directorate of Higher Education of the Ministry of Research, Technology and Higher Education of the Republic of Indonesia
文摘Soil drought occurrence during dry season has been the main constraint, besides prolonged flooding during rainy season, in increasing cropping intensity and rice productivity in tropical riparian wetland. Use of drought tolerant rice genotype might be a suitable option for overcoming such problem. This study focused on the effects of gradual soil drying during early vegetative growth stage on morphological and physiological traits of five Oryza glaberrima genotypes, namely RAM12, RAM14, RAM59, RAM97 and RAM101, and two Oryza sativa subsp japonica genotypes, i.e. Koshihikari and Minamihatamochi. The plants were subjected to 6 d of gradual soil drying condition from 15 days after transplanting(DAT) to 20 DAT, and were allowed to recover until 22 DAT. Gradual soil drying reduced plant growth as indicated by dry mass accumulation. Drought reduced stomatal conductance and increased leaf rolling score of all the genotypes. All the genotypes showed comparable response on stomatal conductance, but O. glaberrima genotypes performed higher in leaf rolling recovery. Meanwhile, O. sativa genotypes decreased total leaf area and specific leaf area, but increased specific leaf weight in order to avoid further damages due to drought stress. Drought tolerance mechanisms in RAM101, RAM12, RAM59 and RAM14 were associated with leaf morpho-physiological responses, root traits and dry biomass accumulation.
基金supported by the National Key Research and Development Program of China (2017YFD0300408)the Major Research Projects of Anhui (202003b06020021)the Graduate Innovation Fund of Anhui Agricultural University (2020 ysj-5)。
文摘Late spring cold(LSC) occurred in the reproductive period of wheat impairs spike and floret differentiation during the reproductive period,when young spikelets are very cold-sensitive.However,under LSC,the responses of wheat spikelets at various positions,leaves,and stems and the interactions between them at physiological levels remain unclear.In the present study,two-year treatments at terminal spikelet stage under two temperatures(2 C,-2 C) and durations(1,2,and 3 days) were imposed in an artificial climate chamber to compare the effects of LSC on grain number and yield in the wheat cultivars Yannong 19(YN19,cold-tolerant) and Xinmai 26(XM26,cold-sensitive).The night temperature regimes were designed to reproduce natural temperature variation.LSC delayed plant growth and inhibited spike and floret differentiation,leading to high yield losses in both cultivars.LSC reduced dry matter accumulation(DMA,g) in spikes,stems,and leaves,reducing the DMA ratios of the spike to leaf and spike to stem.Plant cell wall invertase(CWINV) activity increased in upper and basal spikelets in YN19,whereas CWINV increased in middle spikelets in XM26.Under LSC,soluble sugar and glucose were transported and distributed mainly in upper and basal spikelets for glume and rachis development,so that spike development was relatively complete in YN19,whereas the upper and basal spikelets were severely damaged and most of the glumes in middle spikelets were relatively completely developed in XM26,resulting in pollen abortion mainly in upper and basal spikelets.The development of glumes and rachides was influenced and grain number per spike was decreased after LSC,with kernels present mainly in middle spikelets.Overall,reduced total DMA and dry matter partitioning to spikes under LSC results in poor spikelet development,leading to high losses of grain yield.
基金supported by the University Youth Innovation Science and Technology Support Program of Shandong Province(2021KJ073)the Postdoctoral Innovation Program of Shandong Province(202003039)China Agriculture Research System(CARS-02-21).
文摘The purpose of this study was to identify the physiological mechanism underlying the effects of high temperature and waterlogging on summer maize.The stem development and yield of the maize hybrid Denghai 605 in response to high-temperature stress,waterlogging stress,and their combination applied for six days at the third-leaf,sixth-leaf,and tasseling stages were recorded.The combined stresses reduced lignin biosynthetic enzyme activity and lignin accumulation,leading to abnormal stem development.Reduction of the area and number of vascular bundles in stems led to reduced dry matter accumulation and allocation.Decreased grain dry weight at all three stages reduced grain yield relative to a control.In summary,high temperature,waterlogging,and their combined stress impaired stem development and grain yield of summer maize.The combined stresses were more damaging than either stress alone.
基金Supported by the National Natural Science Foundation of China (30330390 and 30390083)the State Key Basic Research and Development Plan of China(2004CB117200)+2 种基金the Hi-Tech Re- search and Development(863) Program of China(2003AA207080)the Special Project for Adjusting Agricultural Production Structure from the Ministry of Agriculture of China(05-02-01A)the Knowledge Innovation Program of the Chinese Academy of Sciences(KSCX2-SW-304)
文摘Post-anthesis photoassimilation is very important for wheat (Triticum aestivum L.) grain filling. The aim of the present study was to map quantitative trait loci (QTL) for post-anthesis dry matter accumulation (DMA). A set of 120 doubled haploid (DH) lines, derived from winter wheat varieties Hanxuan 10 and Lumai 14, was grown under field conditions in two consecutive growing seasons during 2002-2004 in Beijing. Post-anthesis DMA per culm and related traits, including flag leaf greenness (FLG) and flag leaf weight (FLW; dry weight per flag leaf) at flowering, and grain weight per ear (GWE) were investigated. All traits segregated continuously in the DH population in both trials. The DMA was significantly and positively correlated with GWE, with the correlation coefficients being 0.79 and 0.66 in the 2002-2003 and 2003-2004 growing seasons (both P〈0.01), suggesting the importance of DMA in grain filling. Further correlation analysis showed that FLW was more closely correlated with DMA and GWE than FLG in both growing seasons, indicating that FLW was more important than FLG in influencing DMA and GWE. In total, 30 QTLs for these four traits were mapped and distributed on 10 chromosomes. Phenotypic variations explained by an individual QTL were in the range 5.8%-21.3%, 5.9%-17.2%, 5.1%-18.1%, and 5.6%-16.2% for FLG, FLW, DMA, and GWE, respectively. Eight QTLs for DMA were detected, of which four (on chromosome arms 2AS, 4BL, 5AS, and 7AS) were linked with QTLs for GWE; two (on chromosome arms 5BL and 7BL) coincided with QTLs for FLW. These results may provide useful information for developing marker-assisted selection for the improvement of DMA.