The purpose of this paper is to present some dual properties of dual comodule. It turns out that dual comodule has universal property (cf.Theorem 2). Since (( )*,()°) is an adjoint pair (cf.Theorem 3), some nice ...The purpose of this paper is to present some dual properties of dual comodule. It turns out that dual comodule has universal property (cf.Theorem 2). Since (( )*,()°) is an adjoint pair (cf.Theorem 3), some nice properties of functor ( )° are obtained. Finally Theoram 4 provides that the cotensor product is the dual of the tensor product by (M (?)A N)°≌M°□A°N°. Moreover, the result Hom(M,JV)≌ComA°(N°,M°) is proved for finite related modules M, N over a reflexive algebra A.展开更多
In this paper, we categorify a Hom-associative algebra by imposing the Homassociative law up to some isomorphisms on the multiplication map and requiring that these isomorphisms satisfy the Pentagon axiom, and obtain ...In this paper, we categorify a Hom-associative algebra by imposing the Homassociative law up to some isomorphisms on the multiplication map and requiring that these isomorphisms satisfy the Pentagon axiom, and obtain a 2-Hom-associative algebra. On the other hand, we introduce the dual Hom-quasi-Hopf algebra and show that any dual Homquasi-Hopf algebras can be viewed as a 2-Hom-associative algebra.展开更多
We define the right regular dual of an object X in a monoidal category l, and give several results regarding the weak rigid monoidal category. Based on the definition of the right regular dual, we construct a weak Hop...We define the right regular dual of an object X in a monoidal category l, and give several results regarding the weak rigid monoidal category. Based on the definition of the right regular dual, we construct a weak Hopf algebra structure of H = End(F) whenever (F, J) is a fiber functor from category l to Vec and every X ∈ l has a right regular dual. To conclude, we give a weak reconstruction theorem for a kind of weak Hopf algebra.展开更多
基金the Nature Science Foundation of China(19901009),Nature Science oundation of Guangdong Province(970472000463)
文摘The purpose of this paper is to present some dual properties of dual comodule. It turns out that dual comodule has universal property (cf.Theorem 2). Since (( )*,()°) is an adjoint pair (cf.Theorem 3), some nice properties of functor ( )° are obtained. Finally Theoram 4 provides that the cotensor product is the dual of the tensor product by (M (?)A N)°≌M°□A°N°. Moreover, the result Hom(M,JV)≌ComA°(N°,M°) is proved for finite related modules M, N over a reflexive algebra A.
基金Supported by the National Natural Science Foundation of China(11047030, 11171055) Supported by the Grant from China Scholarship Counci1(2011841026)
文摘In this paper, we categorify a Hom-associative algebra by imposing the Homassociative law up to some isomorphisms on the multiplication map and requiring that these isomorphisms satisfy the Pentagon axiom, and obtain a 2-Hom-associative algebra. On the other hand, we introduce the dual Hom-quasi-Hopf algebra and show that any dual Homquasi-Hopf algebras can be viewed as a 2-Hom-associative algebra.
文摘We define the right regular dual of an object X in a monoidal category l, and give several results regarding the weak rigid monoidal category. Based on the definition of the right regular dual, we construct a weak Hopf algebra structure of H = End(F) whenever (F, J) is a fiber functor from category l to Vec and every X ∈ l has a right regular dual. To conclude, we give a weak reconstruction theorem for a kind of weak Hopf algebra.