In this paper, we study self-dual permutation codes over formal power series rings and finite principal ideal rings. We first give some results on the torsion codes associated with the linear codes over formal power s...In this paper, we study self-dual permutation codes over formal power series rings and finite principal ideal rings. We first give some results on the torsion codes associated with the linear codes over formal power series rings. These results allow for obtaining some conditions for non-existence of self-dual permutation codes over formal power series rings. Finally, we describe self-dual permutation codes over finite principal ideal rings by examining permutation codes over their component chain rings.展开更多
In This paper, the concept of weakly dual ring is introduced, which is a proper generalization of the dual ring. If R is a right weakly dual ring, then (1) Z(RR) = J(R); (2) If R is also a zero-division power ring, th...In This paper, the concept of weakly dual ring is introduced, which is a proper generalization of the dual ring. If R is a right weakly dual ring, then (1) Z(RR) = J(R); (2) If R is also a zero-division power ring, then R is a right AP-injective ring. In addition, some properties of weakly dual rings are given.展开更多
文摘In this paper, we study self-dual permutation codes over formal power series rings and finite principal ideal rings. We first give some results on the torsion codes associated with the linear codes over formal power series rings. These results allow for obtaining some conditions for non-existence of self-dual permutation codes over formal power series rings. Finally, we describe self-dual permutation codes over finite principal ideal rings by examining permutation codes over their component chain rings.
基金Foundationitem:The NNSP(19971073) of China and the NSF of Yangzhou University
文摘In This paper, the concept of weakly dual ring is introduced, which is a proper generalization of the dual ring. If R is a right weakly dual ring, then (1) Z(RR) = J(R); (2) If R is also a zero-division power ring, then R is a right AP-injective ring. In addition, some properties of weakly dual rings are given.