Free-interface dual-compatibility modal synthesis method(compatibility of both force and displacement on interfaces)is introduced to large-scale civil engineering structure to enhance computation efficiency. The basic...Free-interface dual-compatibility modal synthesis method(compatibility of both force and displacement on interfaces)is introduced to large-scale civil engineering structure to enhance computation efficiency. The basic equations of the method are first set up, and then the mode cut-off principle and the dividing principle are proposed. MATLAB is used for simulation in different frame structures. The simulation results demonstrate the applicability of this substructure method to civil engineering structures and the correctness of the proposed mode cut-off principle. Studies are also conducted on how to divide the whole structure for better computation efficiency while maintaining better precision. It is observed that the geometry and material properties should be considered, and the synthesis results would be more precise when the inflection points of the mode shapes are taken into consideration. Furthermore, the simulation performed on a large-scale high-rise connected structure further proves the feasibility and efficiency of this modal synthesis method compared with the traditional global method. It is also concluded from the simulation results that the fewer number of DOFs in each substructure will result in better computation efficiency, but too many substructures will be time-consuming due to the tedious synthesis procedures. Moreover, the substructures with free interface will introduce errors and reduce the precision dramatically, which should be avoided.展开更多
The theoretical approach along with the rationale of harmonic excitation modality (HEM) applied as optimal dual controlled ventilation (DCV) to anaesthetized or severe brain injured patients, whose respiretory mechani...The theoretical approach along with the rationale of harmonic excitation modality (HEM) applied as optimal dual controlled ventilation (DCV) to anaesthetized or severe brain injured patients, whose respiretory mechanics can be properly assumed steady and linear, are presented and discussed. The design criteria of an improved version of the Advanced Lung Ventilation System (ALVS), including HEM in its functional features, are described in details. In particular, the elimination of any undesiderable artificial distortion affecting the respiratory and ventilation pattern waveforms is achieved by maintaining continuous forever the airflow inside the ventilation circuit, ensuring also the highest level of safety for patient in any condition. In such a way, the full-time compatibility of controlled breathings with spontaneous breathing activity of patient during continuous positive airways pressure (CPAP) or bilevel positive airways pressure (BiPAP) ventilation modalities and during assisted/controlled ventilation(A/CV), includeing also synchronized or triggered ventilation modalities, is an intrinsic innovative feature of the system available for clinical application. As expected and according to the clinical requirements, HEM provides for physiological respiratory and ventilation pattern waveforms together with optimal “breath to breath” feedback control of lung volume driven by an improved diagnostic measurement procedure, whose outputs are also vital for adapting all the preset ventilation parameters to the current value of the respiratory parameters of patient. The results produced by software simulations concerning both adult and neonatal patients in different clinical conditions are completely consistent with those obtained by the theoretical treatment, showing that HEM reaches the best performances from both clinical and engineering points of view.展开更多
基金Supported by the National Natural Science Foundation of China(No.51108089)Doctoral Programs Foundation of Ministry of Education of China(No.20113514120005)the Foundation of the Education Department of Fujian Province(No.JA14057)
文摘Free-interface dual-compatibility modal synthesis method(compatibility of both force and displacement on interfaces)is introduced to large-scale civil engineering structure to enhance computation efficiency. The basic equations of the method are first set up, and then the mode cut-off principle and the dividing principle are proposed. MATLAB is used for simulation in different frame structures. The simulation results demonstrate the applicability of this substructure method to civil engineering structures and the correctness of the proposed mode cut-off principle. Studies are also conducted on how to divide the whole structure for better computation efficiency while maintaining better precision. It is observed that the geometry and material properties should be considered, and the synthesis results would be more precise when the inflection points of the mode shapes are taken into consideration. Furthermore, the simulation performed on a large-scale high-rise connected structure further proves the feasibility and efficiency of this modal synthesis method compared with the traditional global method. It is also concluded from the simulation results that the fewer number of DOFs in each substructure will result in better computation efficiency, but too many substructures will be time-consuming due to the tedious synthesis procedures. Moreover, the substructures with free interface will introduce errors and reduce the precision dramatically, which should be avoided.
文摘The theoretical approach along with the rationale of harmonic excitation modality (HEM) applied as optimal dual controlled ventilation (DCV) to anaesthetized or severe brain injured patients, whose respiretory mechanics can be properly assumed steady and linear, are presented and discussed. The design criteria of an improved version of the Advanced Lung Ventilation System (ALVS), including HEM in its functional features, are described in details. In particular, the elimination of any undesiderable artificial distortion affecting the respiratory and ventilation pattern waveforms is achieved by maintaining continuous forever the airflow inside the ventilation circuit, ensuring also the highest level of safety for patient in any condition. In such a way, the full-time compatibility of controlled breathings with spontaneous breathing activity of patient during continuous positive airways pressure (CPAP) or bilevel positive airways pressure (BiPAP) ventilation modalities and during assisted/controlled ventilation(A/CV), includeing also synchronized or triggered ventilation modalities, is an intrinsic innovative feature of the system available for clinical application. As expected and according to the clinical requirements, HEM provides for physiological respiratory and ventilation pattern waveforms together with optimal “breath to breath” feedback control of lung volume driven by an improved diagnostic measurement procedure, whose outputs are also vital for adapting all the preset ventilation parameters to the current value of the respiratory parameters of patient. The results produced by software simulations concerning both adult and neonatal patients in different clinical conditions are completely consistent with those obtained by the theoretical treatment, showing that HEM reaches the best performances from both clinical and engineering points of view.