A dual-band characteristic of stacked rectangular microstrip antenna is experimentally studied. It is a probe fed antenna for impedance matching with 50Ω coaxial cable. This antenna works well in the frequency range ...A dual-band characteristic of stacked rectangular microstrip antenna is experimentally studied. It is a probe fed antenna for impedance matching with 50Ω coaxial cable. This antenna works well in the frequency range (2.86 to 4.63 GHz). It is basically a low cost, light weight medium gain antenna, which is used for mobile communication. The variations of the length and width (1mm) of the stacked rectangular patch antenna have been done. And it is found dual resonance with increasing lower resonance frequency and almost constant upper resonance frequency with increases of the length & width of rectangular microstrip antenna. The input impedance and VSWR, return loss have been measured with the help of Network analyzer.展开更多
The key technologies for the dual high-k and dual metal gate, such as the electrical optimization of metal insert poly-Si stack structure, the separating of high-k and metal gate of n/pMOS in different regions of the ...The key technologies for the dual high-k and dual metal gate, such as the electrical optimization of metal insert poly-Si stack structure, the separating of high-k and metal gate of n/pMOS in different regions of the wafer, and the synchronous etching of n/pMOS gate stack, are successfully developed. First, reasonable flat-band voltage and equivalent oxide thickness of pMOS MIPS structure are obtained by further optimizing the HfSiAlON dielectric through incorporating more Al-O dipole at interface between HfSiAlON and bottom SiOx. Then, the separating of high-k and metal gate for n/pMOS is achieved by SC1(NH4OH:H2O2:H2O = 1 : 1 : 5) and DHF-based solution for the selective removing of n MOS TaN and Hf Si ON and by BCl3-based plasma and DHF-based solution for the selective removing of pMOS TaN/Mo and HfSiAlON.After that, the synchronous etching of n/pMOS gate stack is developed by utilizing optimized BCl3/SF6/O2/Ar plasma to obtain a vertical profile for TaN and TaN/Mo and by utilizing BCl3/Ar plasma combined with DHF-based solution to achieve high selectivity to Si substrate. Finally, good electrical characteristics of CMOS devices, obtained by utilizing these new developed technologies, further confirm that they are practicable technologies for DHDMG integration.展开更多
文摘A dual-band characteristic of stacked rectangular microstrip antenna is experimentally studied. It is a probe fed antenna for impedance matching with 50Ω coaxial cable. This antenna works well in the frequency range (2.86 to 4.63 GHz). It is basically a low cost, light weight medium gain antenna, which is used for mobile communication. The variations of the length and width (1mm) of the stacked rectangular patch antenna have been done. And it is found dual resonance with increasing lower resonance frequency and almost constant upper resonance frequency with increases of the length & width of rectangular microstrip antenna. The input impedance and VSWR, return loss have been measured with the help of Network analyzer.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA010601)
文摘The key technologies for the dual high-k and dual metal gate, such as the electrical optimization of metal insert poly-Si stack structure, the separating of high-k and metal gate of n/pMOS in different regions of the wafer, and the synchronous etching of n/pMOS gate stack, are successfully developed. First, reasonable flat-band voltage and equivalent oxide thickness of pMOS MIPS structure are obtained by further optimizing the HfSiAlON dielectric through incorporating more Al-O dipole at interface between HfSiAlON and bottom SiOx. Then, the separating of high-k and metal gate for n/pMOS is achieved by SC1(NH4OH:H2O2:H2O = 1 : 1 : 5) and DHF-based solution for the selective removing of n MOS TaN and Hf Si ON and by BCl3-based plasma and DHF-based solution for the selective removing of pMOS TaN/Mo and HfSiAlON.After that, the synchronous etching of n/pMOS gate stack is developed by utilizing optimized BCl3/SF6/O2/Ar plasma to obtain a vertical profile for TaN and TaN/Mo and by utilizing BCl3/Ar plasma combined with DHF-based solution to achieve high selectivity to Si substrate. Finally, good electrical characteristics of CMOS devices, obtained by utilizing these new developed technologies, further confirm that they are practicable technologies for DHDMG integration.