The effects of operating parameters on desulfurization efficiency of a dual-alkali FGD process in a rotating-stream-tray(RST)scrubber are investigated.A dimensionless factor,ε,is proposed in this study to predict des...The effects of operating parameters on desulfurization efficiency of a dual-alkali FGD process in a rotating-stream-tray(RST)scrubber are investigated.A dimensionless factor,ε,is proposed in this study to predict desulfurization efficiency of this dual-alkali FGD system.ε represents the desulfurization ability of a dual alkali FGD system,determined by five main operating parameters such as sodium ion concentration,ratio of absorbent flow rate to flue gas flow rate,pH value of absorbent solution,ratio of sulfate ion to total sulfur ion in absorbent solution,and sulfur dioxide concentration of inlet flue gas.The empirical expression for predicting desulfurization efficiency at different temperatures is obtained through the experimental study and theoretical calculation.It provides useful guide for engineering design.展开更多
基金Supported by the National Hi-tech Researchand Development Program(863program)of China(No.2001AA642030-1)Key Research Project of Zhejiang Province(No.2004C23028)New Century Excellent Scholar Program of Ministry of Education of the People's Republic of China(No.NCET-04-0549)
文摘The effects of operating parameters on desulfurization efficiency of a dual-alkali FGD process in a rotating-stream-tray(RST)scrubber are investigated.A dimensionless factor,ε,is proposed in this study to predict desulfurization efficiency of this dual-alkali FGD system.ε represents the desulfurization ability of a dual alkali FGD system,determined by five main operating parameters such as sodium ion concentration,ratio of absorbent flow rate to flue gas flow rate,pH value of absorbent solution,ratio of sulfate ion to total sulfur ion in absorbent solution,and sulfur dioxide concentration of inlet flue gas.The empirical expression for predicting desulfurization efficiency at different temperatures is obtained through the experimental study and theoretical calculation.It provides useful guide for engineering design.
基金financially supported by the National Natural Science Foundation of China(22168025)the Natural Science Foundation of Jiangxi Province(20192BAB203013,20202ACB L203003)+1 种基金CAS-Commonwealth Scientific and Industrial Research Organization(CSIRO)Joint Research Projects(121835KYSB20200039)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(Grant.YLU-DNL Fund 2021011)。