The progress in dual-band dual-polarization(DBDP)shared-aperture antennas for the synthetic aperture radar(SAR)application in the last decade is reviewed.Several designs of DBDP SAR antenna arrays are introduced with ...The progress in dual-band dual-polarization(DBDP)shared-aperture antennas for the synthetic aperture radar(SAR)application in the last decade is reviewed.Several designs of DBDP SAR antenna arrays are introduced with their main performances,then their comparison is summarized.In addition,some techniques enhancing DBDP antenna performances are presented.展开更多
In this paper,a dual-band graphene-based frequency selective surface(GFSS)is investigated and the operating mechanism of this GFSS is analyzed.By adjusting the bias voltage to control the graphene chemical po-tential ...In this paper,a dual-band graphene-based frequency selective surface(GFSS)is investigated and the operating mechanism of this GFSS is analyzed.By adjusting the bias voltage to control the graphene chemical po-tential between 0 eV and 0.5 eV,the GFSS can achieve four working states:dual-band passband,high-pass lowimpedance,low-pass high-impedance,and band-stop.Based on this GFSS,a hexagonal radome on a broadband omnidirectional monopole antenna is proposed,which can achieve independent 360°six-beam omnidirectional scanning at 1.08 THz and 1.58 THz dual bands.In addition,while increasing the directionality,the peak gains of the dual bands reach 7.44 dBi and 6.67 dBi,respectively.This work provides a simple method for realizing multi-band terahertz multi-beam reconfigurable antennas.展开更多
A tunable dual polarization absorption-transmission-absorption(A-T-A)frequency selective absorbers(FSR)to address the issue of high insertion loss in current tunable FSRs is proposed.The lumped resistors are loaded on...A tunable dual polarization absorption-transmission-absorption(A-T-A)frequency selective absorbers(FSR)to address the issue of high insertion loss in current tunable FSRs is proposed.The lumped resistors are loaded onto the lossy layer to absorb electromagnetic waves within the absorption band.The varactor diodes are loaded onto another lossless layer to control the transmission frequency band of the FSR.Its equivalent circuit model is provided.The proposed tunable FSR can change the passband within the range of 14.5~15.5 GHz by changing the bias voltage applied to the lossless transmission layer,while maintaining insertion loss above-1.67 dB.The series resonant structure of the lossy layer generates bilateral absorption bands between 10.2~13.5 GHz and 17.2~22 GHz,with broadband reflection suppression ranging from 10.3 GHz to 22 GHz(70.7%).The prototype is manufactured,and the measured results have verified the simulation results.展开更多
Dual-polarization(dual-pol)radar can measure additional parameters that provide more microphysical information of precipitation systems than those provided by conventional Doppler radar.The dual-pol parameters have be...Dual-polarization(dual-pol)radar can measure additional parameters that provide more microphysical information of precipitation systems than those provided by conventional Doppler radar.The dual-pol parameters have been successfully utilized to investigate precipitation microphysics and improve radar quantitative precipitation estimation(QPE).The recent progress in dual-pol radar research and applications in China is summarized in four aspects.Firstly,the characteristics of several representative dual-pol radars are reviewed.Various approaches have been developed for radar data quality control,including calibration,attenuation correction,calculation of specific differential phase shift,and identification and removal of non-meteorological echoes.Using dual-pol radar measurements,the microphysical characteristics derived from raindrop size distribution retrieval,hydrometeor classification,and QPE is better understood in China.The limited number of studies in China that have sought to use dual-pol radar data to validate the microphysical parameterization and initialization of numerical models and assimilate dual-pol data into numerical models are summarized.The challenges of applying dual-pol data in numerical models and emerging technologies that may make significant impacts on the field of radar meteorology are discussed.展开更多
Based on the observations of a squall line on 11 May 2020 and stratiform precipitation on 6 June 2020 from two X-band dual-polarization phased array weather radars(DP-PAWRs)and an S-band dual-polarization Doppler weat...Based on the observations of a squall line on 11 May 2020 and stratiform precipitation on 6 June 2020 from two X-band dual-polarization phased array weather radars(DP-PAWRs)and an S-band dual-polarization Doppler weather radar(CINRAD/SA-D),the data reliability of DP-PAWR and its ability to detect the fine structures of mesoscale weather systems were assessed.After location matching,the observations of DP-PAWR and CINRAD/SA-D were compared in terms of reflectivity(Z_(H)),radial velocity(V),differential reflectivity(Z_(DR)),and specific differential phase(K_(DP)).The results showed that:(1)DP-PAWR has better ability to detect mesoscale weather systems than CINRAD/SAD;the multi-elevation-angles scanning of the RHI mode enables DP-PAWR to obtain a wider detection range in the vertical direction.(2)DP-PAWR’s Z_(H)and V structures are acceptable,while its sensitivity is worse than that of CINRAD/SA-D.The Z H suffers from attenuation and the Z_(H)area distribution is distorted around strong rainfall regions.(3)DP-PAWR’s Z_(DR)is close to a normal distribution but slightly smaller than that of CINRAD/SA-D.The K_(DP)products of DP-PAWR have much higher sensitivity,showing a better indication of precipitation.(4)DP-PAWR is capable of revealing a detailed and complete structure of the evolution of the whole storm and the characteristics of particle phase variations during the process of triggering and enhancement of a small cell in the front of a squall line,as well as the merging of the cell with the squall line,which cannot be observed by CINRAD/SA-D.With its fast volume scan feature and dual-polarization detection capability,DP-PAWR shows great potential in further understanding the development and evolution mechanisms of meso-γ-scale and microscale weather systems.展开更多
A major issue in radar quantitative precipitation estimation is the contamination of radar echoes by non-meteorological targets such as ground clutter,chaff,clear air echoes etc.In this study,a fuzzy logic algorithm f...A major issue in radar quantitative precipitation estimation is the contamination of radar echoes by non-meteorological targets such as ground clutter,chaff,clear air echoes etc.In this study,a fuzzy logic algorithm for the identification of non-meteorological echoes is developed using optimized membership functions and weights for the dual-polarization radar located at Mount Sobaek.For selected precipitation and non-meteorological events,the characteristics of the precipitation and non-meteorological echo are derived by the probability density functions of five fuzzy parameters as functions of reflectivity values.The membership functions and weights are then determined by these density functions.Finally,the nonmeteorological echoes are identified by combining the membership functions and weights.The performance is qualitatively evaluated by long-term rain accumulation.The detection accuracy of the fuzzy logic algorithm is calculated using the probability of detection(POD),false alarm rate(FAR),and clutter–signal ratio(CSR).In addition,the issues in using filtered dual-polarization data are alleviated.展开更多
The passive radar is a hot research topic. A multi-channel wideband passive radar experimental system is designed and the digital television terrestrial broadcasting (DTTB) signal is chosen to carry out the target det...The passive radar is a hot research topic. A multi-channel wideband passive radar experimental system is designed and the digital television terrestrial broadcasting (DTTB) signal is chosen to carry out the target detection experiment of civil aviation aircraft. The polarization and spatial filtering methods are used to solve the strong direct path interference suppression problems brought by the receiving system location;combined with the characteristics of DTTB signal, the block length selection interval in the block batch processing method for range-Doppler images calculation is given;the clutter suppression performance is compared through the experimental data receiving from different bistatic polarization channels, the conclusion is different from the monostatic radar and it can guide the passive radar experiment.展开更多
Dual-band electrochromic smart windows(DESWs)with independent control of the transmittance of near-infrared and visible light show great potential in the application of smart and energy-saving buildings.The current st...Dual-band electrochromic smart windows(DESWs)with independent control of the transmittance of near-infrared and visible light show great potential in the application of smart and energy-saving buildings.The current strategy for building DESWs is to screen materials for composite or prepare plasmonic nanocrystal films.These rigorous preparation processes seriously limit the further development of DESWs.Herein,we report a facile and effective sol-gel strategy using a foaming agent to achieve porous Ti-doped tungsten oxide film for the high performance of DESWs.The introduction of foaming agent polyvinylpyrrolidone during the film preparation can increase the specific surface area and free carrier concentration of the films and enhance their independent regulation ability of near-infrared electrochromism.As a result,the optimal film shows excellent dual-band electrochromic properties,including high optical modulation(84.9%at 633 nm and 90.3%at 1200 nm),high coloration efficiency(114.9 cm^(2) C^(-1) at 633 nm and 420.3 cm^(2) C^(-1) at 1200 nm),quick switching time,excellent bistability,and good cycle stability(the transmittance modulation losses at 633 and 1200 nm were 11%and 3.5%respectively after 1000 cycles).A demonstrated DESW fabricated by the sol-gel film showed effective management of heat and light of sunlight.This study represents a significant advance in the preparation of dual-band electrochromic films,which will shed new light on advancing electrochromic technology for future energy-saving smart buildings.展开更多
A four-element compact dual-band patch antenna having a common ground plane operating at 28/38 GHz is proposed formillimeter-wave communication systems in this paper.Themultiple-input-multiple-output(MIMO)antenna geom...A four-element compact dual-band patch antenna having a common ground plane operating at 28/38 GHz is proposed formillimeter-wave communication systems in this paper.Themultiple-input-multiple-output(MIMO)antenna geometry consists of a slotted ellipse enclosed within a hollow circle which is orthogonally rotated with a connected partial ground at the back.The overall size of the four elements MIMO antenna is 2.24λ×2.24λ(at 27.12GHz).The prototype of four-element MIMOresonator is designed and printed using Rogers RTDuroid 5880 withε_(r)=2.2 and loss tangent=0.0009 and having a thickness of 0.8 mm.It covers dual-band having a fractional bandwidth of 15.7%(27.12-31.34 GHz)and 4.2%(37.21-38.81 GHz)for millimeter-wave applications with a gain of more than 4 dBi at both bands.The proposed antenna analysis in terms ofMIMOdiversity parameters(Envelope Correlation Coefficient(ECC)and Diversity Gain(DG))is also carried out.The experimental result in terms of reflection coefficient,radiation pattern,gain and MIMOdiversity parameter correlates very well with the simulated ones that show the potential of the proposed design for MIMO applications at millimeter-wave frequencies.展开更多
A novel dual-band planar microstrip filter using parallel coupled microstrip lines and open-loop stepped-impedance resonators(SIRs)loaded with two shunt open stubs is presented.By tuning the physical lengths of open...A novel dual-band planar microstrip filter using parallel coupled microstrip lines and open-loop stepped-impedance resonators(SIRs)loaded with two shunt open stubs is presented.By tuning the physical lengths of open-loop SIRs,parallel coupled microstrip lines and two stubs,the bandpass filter has good dual-passband performance at 2.55 and 5.35 GHz and high isolation between the two passbands.The relative bandwidths of the two passbands are 11.8% and 16.8%,respectively.Compared with the conventional open-loop SIR filters,the designed filter has a comparatively broader fractional bandwidth at the second passband.So it can cover all the wireless LAN(local area network)bands.In addition,the filter has the features of low loss,high rejection and low ripple.The measured results are in good agreement with the simulated responses by HFSS software.展开更多
A kind of compact ultra wideband (UWB) monopole antenna with dual-band notched function is presented.The proposed antenna,using "C" and "L" apertures embedded in the annular ring patch and ground patch,gets two ...A kind of compact ultra wideband (UWB) monopole antenna with dual-band notched function is presented.The proposed antenna,using "C" and "L" apertures embedded in the annular ring patch and ground patch,gets two bandnotched characteristics in WiMAX3.5 GHz and WLAN 5.5 GHz.The size of antenna is 24 mm × 36 mm × 1.6 mm.The simulation results show that waveband range of the antenna is 2.7-10.6 GHz for S11 <-10 dB and the band-notched wavebands are 3.2-3.8 GHz and 5.1-6 GHz.So it has miniaturization,ultra-band and band-notched characteristics.Meanwhile,the radition pattern,directivety and gain are perfect,which meets the practical need.展开更多
A wideband dual-polarized slot-coupled stacked microstrip antenna with very high isolation and low cross-polarization is presented. To improve isolation between two poiarization ports, the stacked patches are excited ...A wideband dual-polarized slot-coupled stacked microstrip antenna with very high isolation and low cross-polarization is presented. To improve isolation between two poiarization ports, the stacked patches are excited by an open-ended and a T-shaped microstrip lines both via two H-shaped slots placed in a "T" configuration. The measured isolation is better than 40.5 dB over the bandwidth from 8.8 to 9.8 GHz with cross-polarization level less than - 28.5 dB. The measured VSWR ≤ 2 bandwidths reach 20.7 96 and 19.196 at the verrical and horizontal polarization ports, respectively. This antenna is suitable to be used as array elements in spacebome synthetic aperture radars (SAR) and active phased array radars.展开更多
A novel dual-band antenna is proposed for mitigating the multi-path interference in the global navigation satellite system(GNSS) applications. The radiation patches consist of a shortedannular-ring reduced-surface-w...A novel dual-band antenna is proposed for mitigating the multi-path interference in the global navigation satellite system(GNSS) applications. The radiation patches consist of a shortedannular-ring reduced-surface-wave(SAR-RSW) element and an inverted-shorted-annular-ring reduced-surface-wave(ISAR-RSW)element. One key feature of the design is the proximity-coupled probe feeds to increase impedance bandwidth. The other is the defected ground structure band rejection filters to suppress the interaction effect between the SAR-RSW and the ISAR-RSW elements. In addition, trans-directional couplers are used to obtain tight coupling. Measurement results indicate that the antenna has a larger than 10 d B return loss bandwidth and a less than 3 d B axial-ratio(AR) bandwidth in the range of(1.164 – 1.255) GHz and(1.552 – 1.610) GHz. The gain of the passive antenna in the whole operating band is more than 7 d Bi.展开更多
We propose a periodic structure as an extra absorption layer(i.e., absorber) based on surface plasmon resonance effects, enhancing dual-band absorption in both middle wavelength infrared(MWIR) and long wavelength ...We propose a periodic structure as an extra absorption layer(i.e., absorber) based on surface plasmon resonance effects, enhancing dual-band absorption in both middle wavelength infrared(MWIR) and long wavelength infrared(LWIR)regions. Periodic gold disks are selectively patterned onto the top layer of suspended SiN/VO_2/SiN sandwich-structure.We employ the finite element method to model this structure in COMSOL Multiphysics including a proposed method of modulating the absorption peak. Simulation results show that the absorber has two absorption peaks at wavelengths λ =4.8 μm and λ = 9 μm with the absorption magnitudes more than 0.98 and 0.94 in MWIR and LWIR regions, respectively. In addition, the absorber achieves broad spectrum absorption in LWIR region, in the meanwhile, tunable dual-band absorption peaks can be achieved by variable heights of cavity as well as diameters and periodicity of disk. Thus, this designed absorber can be a good candidate for enhancing the performance of dual band uncooled infrared detector, furthermore, the manufacturing process of cavity can be easily simplified so that the reliability of such devices can be improved.展开更多
An 8 × 1-element wideband dual-polarized slot-coupled microstrip antenna array with high isolation and low crosspolarization in X-band is presented. The array antenna offers an impedance bandwidth (VSWR≤2) of ...An 8 × 1-element wideband dual-polarized slot-coupled microstrip antenna array with high isolation and low crosspolarization in X-band is presented. The array antenna offers an impedance bandwidth (VSWR≤2) of 23% and 21% for dual polarization ports, respectively. The measured isolation between two polarization ports is better than 35 dB and the measured cross-polarization level below -25 dB in the main beam over the operation frequency band of 9.35 GHz to 9.75 GHz. This array is well suitable for X-band SAR (synthetic aperture radar) antenna apphcation.展开更多
The bright band, a layer of enhanced radar reflectivity associated with melting ice particles, is a major source of signifi- cant overestimation in quantitative precipitation estimation (QPE) based on the Z-R (refl...The bright band, a layer of enhanced radar reflectivity associated with melting ice particles, is a major source of signifi- cant overestimation in quantitative precipitation estimation (QPE) based on the Z-R (reflectivity factor-rain rate) relationship. The effects of the bright band on radar-based QPE can be eliminated by vertical profile of reflectivity (VPR) correction. In this study, we applied bright-band correction algorithms to evaluate three different bands (S-, C- and X-band) of dual-polarized radars and to reduce overestimation errors in Z-R relationship-based QPEs. After the reflectivity was corrected by the algo- rithms using average VPR (AVPR) alone and a combination of average VPR and the vertical profile of the copolar correlation coefficient (AVPR+CC), the QPEs were derived. The bright-band correction and resulting QPEs were evaluated in eight precipitation events by comparing to the uncorrected reflectivity and rain-gange observations, separately. The overestimation of Z-R relationship-based QPEs associated with the bright band was reduced after correction by the two schemes for which hourly rainfall was less than 5 mm. For the verification metrics of RMSE (root-mean-square error), RMAE (relative mean absolute error) and RMB (relative mean bias) of QPEs, averaged over all eight cases, the AVPR method improved from 2.28, 0.94 and 0.78 to 1.55, 0.60 and 0.40, respectively, while the AVPR+CC method improved to 1.44, 0.55 and 0.30, respectively. The QPEs after AVPR+CC correction had less overestimation than those after AVPR correction, and similar conclusions were drawn for all three different bands of dual-polarized radars.展开更多
In order to meet the urgent needs in wireless communications, microwave image synthetic aperture radars (SAR), and electronic warfare systems, this dissertation studies several types of broadband dual-polarized plan...In order to meet the urgent needs in wireless communications, microwave image synthetic aperture radars (SAR), and electronic warfare systems, this dissertation studies several types of broadband dual-polarized planar antenna elements and arrays, and proposes a few of novel designs with experimental verification. The main accomplishments reported in the dissertation are as follows.展开更多
This paper presents a concurrent dual-band branch-line coupler with an independently tunable center frequency. In the proposed architecture, the quarter-wavelength lines, which work at two separated bands concurrently...This paper presents a concurrent dual-band branch-line coupler with an independently tunable center frequency. In the proposed architecture, the quarter-wavelength lines, which work at two separated bands concurrently and can be tuned in one of them, are key components. Based on the analysis of ABCD-matrix, a novel hybrid structure and a pair of varactors topology are utilized to achieve concurrent dual-band operation and independent tunability, respectively. Using this configuration, it is convenient to tune the center frequency of the upper band, while the responses of the lower band remain unaltered. To verify the proposed idea, a demonstration is implemented and the simulated results are presented.展开更多
A graphene-based tunable dual-band metamaterial absorber which is polarization insensitive is numerically pro- posed at mid-infrared frequencies. In numerical simulation the metamaterial absorber exhibits two absorpti...A graphene-based tunable dual-band metamaterial absorber which is polarization insensitive is numerically pro- posed at mid-infrared frequencies. In numerical simulation the metamaterial absorber exhibits two absorption peaks at the resonance wavelengths of 6.246 μm and 6.837μm when the Fermi level of graphene is fixed at 0. 6 eV. Absorption spectra at different Fermi levels of graphene are displayed and tuning functions are discussed in detail. Both the resonance wavelengths of the absorber blue shift with the increase in Fermi level of graphene. Moreover, the surface current distributions on the gold resonator and ground plane at the two resonance wavelengths are simulated to deeply understand the physical mechanism of resonance absorption.展开更多
A tunable absorber, composed of a graphene ribbon on two layers of TiO2-Au between two slabs of dielectric material all on a metal substrate, is designed and numerically investigated. The absorption of the composite s...A tunable absorber, composed of a graphene ribbon on two layers of TiO2-Au between two slabs of dielectric material all on a metal substrate, is designed and numerically investigated. The absorption of the composite structure varies with the geometrical parameters of the structure and the physical parameters of graphene at mid-infrared frequencies. The numerical simulation shows that a near-perfect absorption with single and alum bands can be achieved in a certain frequency range. We also analyze the electric and surface current distributions to study the dual-band absorber. The results show that the absorber can be tuned by the chemical potential and electron phonon relaxation time of graphene, and electromagnetically induced transparency phenomenon can be obtained. The results of this study may be beneficial in the fields of infrared communication, perfect absorbers, sensors and filters.展开更多
基金supported by the National High-Technology Research and Development (863)Project of China (No.2007AA12Z125)the National Natural Science Foundation of China (Grant No.60871030)the Specialized Research Fund of Doctoral Programs,Ministry of Education of China (No.20050280016).
文摘The progress in dual-band dual-polarization(DBDP)shared-aperture antennas for the synthetic aperture radar(SAR)application in the last decade is reviewed.Several designs of DBDP SAR antenna arrays are introduced with their main performances,then their comparison is summarized.In addition,some techniques enhancing DBDP antenna performances are presented.
基金Supported by the Natural Science Foundation of Tibet Autonomous Region(XZ202401ZR0025)the National Natural Science Founda-tion of China(62164011,62301081)the Natural Science Foundation of Shaanxi Province(2022JQ-589)。
文摘In this paper,a dual-band graphene-based frequency selective surface(GFSS)is investigated and the operating mechanism of this GFSS is analyzed.By adjusting the bias voltage to control the graphene chemical po-tential between 0 eV and 0.5 eV,the GFSS can achieve four working states:dual-band passband,high-pass lowimpedance,low-pass high-impedance,and band-stop.Based on this GFSS,a hexagonal radome on a broadband omnidirectional monopole antenna is proposed,which can achieve independent 360°six-beam omnidirectional scanning at 1.08 THz and 1.58 THz dual bands.In addition,while increasing the directionality,the peak gains of the dual bands reach 7.44 dBi and 6.67 dBi,respectively.This work provides a simple method for realizing multi-band terahertz multi-beam reconfigurable antennas.
文摘A tunable dual polarization absorption-transmission-absorption(A-T-A)frequency selective absorbers(FSR)to address the issue of high insertion loss in current tunable FSRs is proposed.The lumped resistors are loaded onto the lossy layer to absorb electromagnetic waves within the absorption band.The varactor diodes are loaded onto another lossless layer to control the transmission frequency band of the FSR.Its equivalent circuit model is provided.The proposed tunable FSR can change the passband within the range of 14.5~15.5 GHz by changing the bias voltage applied to the lossless transmission layer,while maintaining insertion loss above-1.67 dB.The series resonant structure of the lossy layer generates bilateral absorption bands between 10.2~13.5 GHz and 17.2~22 GHz,with broadband reflection suppression ranging from 10.3 GHz to 22 GHz(70.7%).The prototype is manufactured,and the measured results have verified the simulation results.
基金primarily supported by the National Key Research and Development Program of China(Grant Nos.2017YFC1501703 and 2018YFC1506404)the National Natural Science Foundation of China(Grant Nos.41875053,41475015 and 41322032)+2 种基金the National Fundamental Research 973 Program of China(Grant Nos.2013CB430101 and2015CB452800)the Open Research Program of the State Key Laboratory of Severe Weatherthe Key Research Development Program of Jiangsu Science and Technology Department(Social Development Program,No.BE2016732)
文摘Dual-polarization(dual-pol)radar can measure additional parameters that provide more microphysical information of precipitation systems than those provided by conventional Doppler radar.The dual-pol parameters have been successfully utilized to investigate precipitation microphysics and improve radar quantitative precipitation estimation(QPE).The recent progress in dual-pol radar research and applications in China is summarized in four aspects.Firstly,the characteristics of several representative dual-pol radars are reviewed.Various approaches have been developed for radar data quality control,including calibration,attenuation correction,calculation of specific differential phase shift,and identification and removal of non-meteorological echoes.Using dual-pol radar measurements,the microphysical characteristics derived from raindrop size distribution retrieval,hydrometeor classification,and QPE is better understood in China.The limited number of studies in China that have sought to use dual-pol radar data to validate the microphysical parameterization and initialization of numerical models and assimilate dual-pol data into numerical models are summarized.The challenges of applying dual-pol data in numerical models and emerging technologies that may make significant impacts on the field of radar meteorology are discussed.
基金Guangdong Basic and Applied Basic Research Foundation(2020A1515010602)Special Fund of China Meteorological Administration for Innovation and Development(CXFZ2022J063)+4 种基金Special Fund for Forecasters of China Meteorological Administration(CMAYBY2019-082)Science and Technology Planning Program of Guangzhou(201903010101)Key-Area Research and Development Program of Guangdong Province(2020B1111200001)National Natural Science Foundation of China(42075190,41875182)Radar Application and Shortterm Severe-weather Predictions and Warnings Technology Program(GRMCTD202002)。
文摘Based on the observations of a squall line on 11 May 2020 and stratiform precipitation on 6 June 2020 from two X-band dual-polarization phased array weather radars(DP-PAWRs)and an S-band dual-polarization Doppler weather radar(CINRAD/SA-D),the data reliability of DP-PAWR and its ability to detect the fine structures of mesoscale weather systems were assessed.After location matching,the observations of DP-PAWR and CINRAD/SA-D were compared in terms of reflectivity(Z_(H)),radial velocity(V),differential reflectivity(Z_(DR)),and specific differential phase(K_(DP)).The results showed that:(1)DP-PAWR has better ability to detect mesoscale weather systems than CINRAD/SAD;the multi-elevation-angles scanning of the RHI mode enables DP-PAWR to obtain a wider detection range in the vertical direction.(2)DP-PAWR’s Z_(H)and V structures are acceptable,while its sensitivity is worse than that of CINRAD/SA-D.The Z H suffers from attenuation and the Z_(H)area distribution is distorted around strong rainfall regions.(3)DP-PAWR’s Z_(DR)is close to a normal distribution but slightly smaller than that of CINRAD/SA-D.The K_(DP)products of DP-PAWR have much higher sensitivity,showing a better indication of precipitation.(4)DP-PAWR is capable of revealing a detailed and complete structure of the evolution of the whole storm and the characteristics of particle phase variations during the process of triggering and enhancement of a small cell in the front of a squall line,as well as the merging of the cell with the squall line,which cannot be observed by CINRAD/SA-D.With its fast volume scan feature and dual-polarization detection capability,DP-PAWR shows great potential in further understanding the development and evolution mechanisms of meso-γ-scale and microscale weather systems.
基金supported by a grant(14AWMP-B079364-01) from Water Management Research Program funded by Ministry of Land,Infrastructure and Transport of Korean government
文摘A major issue in radar quantitative precipitation estimation is the contamination of radar echoes by non-meteorological targets such as ground clutter,chaff,clear air echoes etc.In this study,a fuzzy logic algorithm for the identification of non-meteorological echoes is developed using optimized membership functions and weights for the dual-polarization radar located at Mount Sobaek.For selected precipitation and non-meteorological events,the characteristics of the precipitation and non-meteorological echo are derived by the probability density functions of five fuzzy parameters as functions of reflectivity values.The membership functions and weights are then determined by these density functions.Finally,the nonmeteorological echoes are identified by combining the membership functions and weights.The performance is qualitatively evaluated by long-term rain accumulation.The detection accuracy of the fuzzy logic algorithm is calculated using the probability of detection(POD),false alarm rate(FAR),and clutter–signal ratio(CSR).In addition,the issues in using filtered dual-polarization data are alleviated.
文摘The passive radar is a hot research topic. A multi-channel wideband passive radar experimental system is designed and the digital television terrestrial broadcasting (DTTB) signal is chosen to carry out the target detection experiment of civil aviation aircraft. The polarization and spatial filtering methods are used to solve the strong direct path interference suppression problems brought by the receiving system location;combined with the characteristics of DTTB signal, the block length selection interval in the block batch processing method for range-Doppler images calculation is given;the clutter suppression performance is compared through the experimental data receiving from different bistatic polarization channels, the conclusion is different from the monostatic radar and it can guide the passive radar experiment.
基金supported by the National Natural Science Foundation of China(51902064)the Natural Science Foundation of Guangxi(2022GXNSFFA0350325)+2 种基金the Scientific and Technological Bases and Talents of Guangxi(Guike AD20159073)the special fund for“Guangxi Bagui Scholars”the“Guangxi HundredTalent Program”。
文摘Dual-band electrochromic smart windows(DESWs)with independent control of the transmittance of near-infrared and visible light show great potential in the application of smart and energy-saving buildings.The current strategy for building DESWs is to screen materials for composite or prepare plasmonic nanocrystal films.These rigorous preparation processes seriously limit the further development of DESWs.Herein,we report a facile and effective sol-gel strategy using a foaming agent to achieve porous Ti-doped tungsten oxide film for the high performance of DESWs.The introduction of foaming agent polyvinylpyrrolidone during the film preparation can increase the specific surface area and free carrier concentration of the films and enhance their independent regulation ability of near-infrared electrochromism.As a result,the optimal film shows excellent dual-band electrochromic properties,including high optical modulation(84.9%at 633 nm and 90.3%at 1200 nm),high coloration efficiency(114.9 cm^(2) C^(-1) at 633 nm and 420.3 cm^(2) C^(-1) at 1200 nm),quick switching time,excellent bistability,and good cycle stability(the transmittance modulation losses at 633 and 1200 nm were 11%and 3.5%respectively after 1000 cycles).A demonstrated DESW fabricated by the sol-gel film showed effective management of heat and light of sunlight.This study represents a significant advance in the preparation of dual-band electrochromic films,which will shed new light on advancing electrochromic technology for future energy-saving smart buildings.
基金This work is supported by the Moore4Medical Project,funded within ECSEL JU in collaboration with the EU H2020 Framework Programme(H2020/2014-2020)under Grant Agreement H2020-ECSEL-2019-IA-876190Fundacao para a Ciência eTecnologia(ECSEL/0006/2019)This work is also funded by the FCT/MEC through national funds and when applicable co-financed by the ERDF,under the PT2020 Partnership Agreement under the UID/EEA/50008/2020 Project.
文摘A four-element compact dual-band patch antenna having a common ground plane operating at 28/38 GHz is proposed formillimeter-wave communication systems in this paper.Themultiple-input-multiple-output(MIMO)antenna geometry consists of a slotted ellipse enclosed within a hollow circle which is orthogonally rotated with a connected partial ground at the back.The overall size of the four elements MIMO antenna is 2.24λ×2.24λ(at 27.12GHz).The prototype of four-element MIMOresonator is designed and printed using Rogers RTDuroid 5880 withε_(r)=2.2 and loss tangent=0.0009 and having a thickness of 0.8 mm.It covers dual-band having a fractional bandwidth of 15.7%(27.12-31.34 GHz)and 4.2%(37.21-38.81 GHz)for millimeter-wave applications with a gain of more than 4 dBi at both bands.The proposed antenna analysis in terms ofMIMOdiversity parameters(Envelope Correlation Coefficient(ECC)and Diversity Gain(DG))is also carried out.The experimental result in terms of reflection coefficient,radiation pattern,gain and MIMOdiversity parameter correlates very well with the simulated ones that show the potential of the proposed design for MIMO applications at millimeter-wave frequencies.
基金The National Natural Science Foundation of China(No.60621002,60702027,60921063)the National Basic Research Program of China(973Program)(No.2010CB327400)the National High Technology Research and Development Program of China(863Program)(No.2008ZX03005-001,2008AA01Z223,2009AA011503)
文摘A novel dual-band planar microstrip filter using parallel coupled microstrip lines and open-loop stepped-impedance resonators(SIRs)loaded with two shunt open stubs is presented.By tuning the physical lengths of open-loop SIRs,parallel coupled microstrip lines and two stubs,the bandpass filter has good dual-passband performance at 2.55 and 5.35 GHz and high isolation between the two passbands.The relative bandwidths of the two passbands are 11.8% and 16.8%,respectively.Compared with the conventional open-loop SIR filters,the designed filter has a comparatively broader fractional bandwidth at the second passband.So it can cover all the wireless LAN(local area network)bands.In addition,the filter has the features of low loss,high rejection and low ripple.The measured results are in good agreement with the simulated responses by HFSS software.
文摘A kind of compact ultra wideband (UWB) monopole antenna with dual-band notched function is presented.The proposed antenna,using "C" and "L" apertures embedded in the annular ring patch and ground patch,gets two bandnotched characteristics in WiMAX3.5 GHz and WLAN 5.5 GHz.The size of antenna is 24 mm × 36 mm × 1.6 mm.The simulation results show that waveband range of the antenna is 2.7-10.6 GHz for S11 <-10 dB and the band-notched wavebands are 3.2-3.8 GHz and 5.1-6 GHz.So it has miniaturization,ultra-band and band-notched characteristics.Meanwhile,the radition pattern,directivety and gain are perfect,which meets the practical need.
文摘A wideband dual-polarized slot-coupled stacked microstrip antenna with very high isolation and low cross-polarization is presented. To improve isolation between two poiarization ports, the stacked patches are excited by an open-ended and a T-shaped microstrip lines both via two H-shaped slots placed in a "T" configuration. The measured isolation is better than 40.5 dB over the bandwidth from 8.8 to 9.8 GHz with cross-polarization level less than - 28.5 dB. The measured VSWR ≤ 2 bandwidths reach 20.7 96 and 19.196 at the verrical and horizontal polarization ports, respectively. This antenna is suitable to be used as array elements in spacebome synthetic aperture radars (SAR) and active phased array radars.
基金supported by the National Natural Science Foundation of China(61071044)the Traffic Applied Basic Research Project of the Ministry of Transport of China(2010-329-225-030)+2 种基金the Doctor Startup Foundation of Liaoning Province(20141103)the Scientific Research Project of the Department of Education of Liaoning Province(L2013196)the Fundamental Research Funds for the Central Universities(2014YB05)
文摘A novel dual-band antenna is proposed for mitigating the multi-path interference in the global navigation satellite system(GNSS) applications. The radiation patches consist of a shortedannular-ring reduced-surface-wave(SAR-RSW) element and an inverted-shorted-annular-ring reduced-surface-wave(ISAR-RSW)element. One key feature of the design is the proximity-coupled probe feeds to increase impedance bandwidth. The other is the defected ground structure band rejection filters to suppress the interaction effect between the SAR-RSW and the ISAR-RSW elements. In addition, trans-directional couplers are used to obtain tight coupling. Measurement results indicate that the antenna has a larger than 10 d B return loss bandwidth and a less than 3 d B axial-ratio(AR) bandwidth in the range of(1.164 – 1.255) GHz and(1.552 – 1.610) GHz. The gain of the passive antenna in the whole operating band is more than 7 d Bi.
基金supported by the One Hundred Talents Program of the Chinese Academy of Sciencesthe National Natural Science Foundation of China(Grant Nos.61376083 and 61307077)+1 种基金the China Postdoctoral Science Foundation(Grant Nos.2013M530613 and 2015T80080)the Guangxi Key Laboratory of Precision Navigation Technology and Application(Grant Nos.DH201505,DH201510,and DH201511)
文摘We propose a periodic structure as an extra absorption layer(i.e., absorber) based on surface plasmon resonance effects, enhancing dual-band absorption in both middle wavelength infrared(MWIR) and long wavelength infrared(LWIR)regions. Periodic gold disks are selectively patterned onto the top layer of suspended SiN/VO_2/SiN sandwich-structure.We employ the finite element method to model this structure in COMSOL Multiphysics including a proposed method of modulating the absorption peak. Simulation results show that the absorber has two absorption peaks at wavelengths λ =4.8 μm and λ = 9 μm with the absorption magnitudes more than 0.98 and 0.94 in MWIR and LWIR regions, respectively. In addition, the absorber achieves broad spectrum absorption in LWIR region, in the meanwhile, tunable dual-band absorption peaks can be achieved by variable heights of cavity as well as diameters and periodicity of disk. Thus, this designed absorber can be a good candidate for enhancing the performance of dual band uncooled infrared detector, furthermore, the manufacturing process of cavity can be easily simplified so that the reliability of such devices can be improved.
基金Project supported by the Specialized Research Fund for the Doctoral Program of High Education of China (Grant No.20050280016)the Shanghai Leading Academic Discipline Project (Grant No.T0102)
文摘An 8 × 1-element wideband dual-polarized slot-coupled microstrip antenna array with high isolation and low crosspolarization in X-band is presented. The array antenna offers an impedance bandwidth (VSWR≤2) of 23% and 21% for dual polarization ports, respectively. The measured isolation between two polarization ports is better than 35 dB and the measured cross-polarization level below -25 dB in the main beam over the operation frequency band of 9.35 GHz to 9.75 GHz. This array is well suitable for X-band SAR (synthetic aperture radar) antenna apphcation.
基金funded by a China National 973 Program on Key Basic Research project (Grant No.2014CB441401)the Beijing Municipal Natural Science Foundation (Grant No.8141002)the Public Welfare Industry (Meteorology) of China (Grant No.GYHY201106046)
文摘The bright band, a layer of enhanced radar reflectivity associated with melting ice particles, is a major source of signifi- cant overestimation in quantitative precipitation estimation (QPE) based on the Z-R (reflectivity factor-rain rate) relationship. The effects of the bright band on radar-based QPE can be eliminated by vertical profile of reflectivity (VPR) correction. In this study, we applied bright-band correction algorithms to evaluate three different bands (S-, C- and X-band) of dual-polarized radars and to reduce overestimation errors in Z-R relationship-based QPEs. After the reflectivity was corrected by the algo- rithms using average VPR (AVPR) alone and a combination of average VPR and the vertical profile of the copolar correlation coefficient (AVPR+CC), the QPEs were derived. The bright-band correction and resulting QPEs were evaluated in eight precipitation events by comparing to the uncorrected reflectivity and rain-gange observations, separately. The overestimation of Z-R relationship-based QPEs associated with the bright band was reduced after correction by the two schemes for which hourly rainfall was less than 5 mm. For the verification metrics of RMSE (root-mean-square error), RMAE (relative mean absolute error) and RMB (relative mean bias) of QPEs, averaged over all eight cases, the AVPR method improved from 2.28, 0.94 and 0.78 to 1.55, 0.60 and 0.40, respectively, while the AVPR+CC method improved to 1.44, 0.55 and 0.30, respectively. The QPEs after AVPR+CC correction had less overestimation than those after AVPR correction, and similar conclusions were drawn for all three different bands of dual-polarized radars.
文摘In order to meet the urgent needs in wireless communications, microwave image synthetic aperture radars (SAR), and electronic warfare systems, this dissertation studies several types of broadband dual-polarized planar antenna elements and arrays, and proposes a few of novel designs with experimental verification. The main accomplishments reported in the dissertation are as follows.
基金Supported by the Provincial Natural Science Foundation of Zhejiang(No.Y1101270)the National Natural Science Foundation of China(No.61171040)+1 种基金Ningbo University Disciplinary Project(No.XKL141038)Agilent Technologies Inc.Research Project(No.3110)
文摘This paper presents a concurrent dual-band branch-line coupler with an independently tunable center frequency. In the proposed architecture, the quarter-wavelength lines, which work at two separated bands concurrently and can be tuned in one of them, are key components. Based on the analysis of ABCD-matrix, a novel hybrid structure and a pair of varactors topology are utilized to achieve concurrent dual-band operation and independent tunability, respectively. Using this configuration, it is convenient to tune the center frequency of the upper band, while the responses of the lower band remain unaltered. To verify the proposed idea, a demonstration is implemented and the simulated results are presented.
基金Supported by the National Natural Science Foundation of China under Grant No 61001018the Natural Science Foundation of Shandong Province under Grant No ZR2012FM011+4 种基金the Shandong-Provincial Higher Educational Science and Technology Program under Grant No J11LG20the Qingdao City Innovative Leading Talent Plan under Grant No 13-CX-25the THz Science and Technology Foundation of China Academy of Engineering Physics under Grant No 201401the Qingdao Economic and Technical Development Zone Science and Technology Project under Grant No 2013-1-64the Shandong University of Science and Technology Foundation under Grant No YC140108
文摘A graphene-based tunable dual-band metamaterial absorber which is polarization insensitive is numerically pro- posed at mid-infrared frequencies. In numerical simulation the metamaterial absorber exhibits two absorption peaks at the resonance wavelengths of 6.246 μm and 6.837μm when the Fermi level of graphene is fixed at 0. 6 eV. Absorption spectra at different Fermi levels of graphene are displayed and tuning functions are discussed in detail. Both the resonance wavelengths of the absorber blue shift with the increase in Fermi level of graphene. Moreover, the surface current distributions on the gold resonator and ground plane at the two resonance wavelengths are simulated to deeply understand the physical mechanism of resonance absorption.
基金Supported by the Program for the University Excellent Young Talents under Grant No gxyq2017074the Anhui Key Research and Development Plan under Grant No 1704e1002208the Natural Science Research Project of Anhui Province Education Department under Grant No KJ2017A396
文摘A tunable absorber, composed of a graphene ribbon on two layers of TiO2-Au between two slabs of dielectric material all on a metal substrate, is designed and numerically investigated. The absorption of the composite structure varies with the geometrical parameters of the structure and the physical parameters of graphene at mid-infrared frequencies. The numerical simulation shows that a near-perfect absorption with single and alum bands can be achieved in a certain frequency range. We also analyze the electric and surface current distributions to study the dual-band absorber. The results show that the absorber can be tuned by the chemical potential and electron phonon relaxation time of graphene, and electromagnetically induced transparency phenomenon can be obtained. The results of this study may be beneficial in the fields of infrared communication, perfect absorbers, sensors and filters.