Recovering high-quality inscription images from unknown and complex inscription noisy images is a challenging research issue.Different fromnatural images,character images pay more attention to stroke information.Howev...Recovering high-quality inscription images from unknown and complex inscription noisy images is a challenging research issue.Different fromnatural images,character images pay more attention to stroke information.However,existingmodelsmainly consider pixel-level informationwhile ignoring structural information of the character,such as its edge and glyph,resulting in reconstructed images with mottled local structure and character damage.To solve these problems,we propose a novel generative adversarial network(GAN)framework based on an edge-guided generator and a discriminator constructed by a dual-domain U-Net framework,i.e.,EDU-GAN.Unlike existing frameworks,the generator introduces the edge extractionmodule,guiding it into the denoising process through the attention mechanism,which maintains the edge detail of the restored inscription image.Moreover,a dual-domain U-Net-based discriminator is proposed to learn the global and local discrepancy between the denoised and the label images in both image and morphological domains,which is helpful to blind denoising tasks.The proposed dual-domain discriminator and generator for adversarial training can reduce local artifacts and keep the denoised character structure intact.Due to the lack of a real-inscription image,we built the real-inscription dataset to provide an effective benchmark for studying inscription image denoising.The experimental results show the superiority of our method both in the synthetic and real-inscription datasets.展开更多
Unmanned Aerial Vehicle(UAV)tracking has been possible because of the growth of intelligent information technology in smart cities,making it simple to gather data at any time by dynamically monitoring events,people,th...Unmanned Aerial Vehicle(UAV)tracking has been possible because of the growth of intelligent information technology in smart cities,making it simple to gather data at any time by dynamically monitoring events,people,the environment,and other aspects in the city.The traditional filter creates a model to address the boundary effect and time filter degradation issues in UAV tracking operations.But these methods ignore the loss of data integrity terms since they are overly dependent on numerous explicit previous regularization terms.In light of the aforementioned issues,this work suggests a dual-domain Jensen-Shannon divergence correlation filter(DJSCF)model address the probability-based distance measuring issue in the event of filter degradation.The two-domain weighting matrix and JS divergence constraint are combined to lessen the impact of sample imbalance and distortion.Two new tracking models that are based on the perspectives of the actual probability filter distribution and observation probability filter distribution are proposed to translate the statistical distance in the online tracking model into response fitting.The model is roughly transformed into a linear equality constraint issue in the iterative solution,which is then solved by the alternate direction multiplier method(ADMM).The usefulness and superiority of the suggested strategy have been shown by a vast number of experimental findings.展开更多
Photoplethysmography(PPG)biometrics have received considerable attention.Although deep learning has achieved good performance for PPG biometrics,several challenges remain open:1)How to effectively extract the feature ...Photoplethysmography(PPG)biometrics have received considerable attention.Although deep learning has achieved good performance for PPG biometrics,several challenges remain open:1)How to effectively extract the feature fusion representation from time and frequency PPG signals.2)How to effectively capture a series of PPG signal transition information.3)How to extract timevarying information from one-dimensional time-frequency sequential data.To address these challenges,we propose a dual-domain and multiscale fusion deep neural network(DMFDNN)for PPG biometric recognition.The DMFDNN is mainly composed of a two-branch deep learning framework for PPG biometrics,which can learn the time-varying and multiscale discriminative features from the time and frequency domains.Meanwhile,we design a multiscale extraction module to capture transition information,which consists of multiple convolution layers with different receptive fields for capturing multiscale transition information.In addition,the dual-domain attention module is proposed to strengthen the domain of greater contributions from time-domain and frequency-domain data for PPG biometrics.Experiments on the four datasets demonstrate that DMFDNN outperforms the state-of-the-art methods for PPG biometrics.展开更多
The proposed robust reversible watermarking algorithm addresses the compatibility challenges between robustness and reversibility in existing video watermarking techniques by leveraging scene smoothness for frame grou...The proposed robust reversible watermarking algorithm addresses the compatibility challenges between robustness and reversibility in existing video watermarking techniques by leveraging scene smoothness for frame grouping videos.Grounded in the H.264 video coding standard,the algorithm first employs traditional robust watermark stitching technology to embed watermark information in the low-frequency coefficient domain of the U channel.Subsequently,it utilizes histogram migration techniques in the high-frequency coefficient domain of the U channel to embed auxiliary information,enabling successful watermark extraction and lossless recovery of the original video content.Experimental results demonstrate the algorithm’s strong imperceptibility,with each embedded frame in the experimental videos achieving a mean peak signal-to-noise ratio of 49.3830 dB and a mean structural similarity of 0.9996.Compared with the three comparison algorithms,the performance of the two experimental indexes is improved by 7.59%and 0.4%on average.At the same time,the proposed algorithm has strong robustness to both offline and online attacks:In the face of offline attacks,the average normalized correlation coefficient between the extracted watermark and the original watermark is 0.9989,and the average bit error rate is 0.0089.In the face of online attacks,the normalized correlation coefficient between the extracted watermark and the original watermark is 0.8840,and the mean bit error rate is 0.2269.Compared with the three comparison algorithms,the performance of the two experimental indexes is improved by 1.27%and 18.16%on average,highlighting the algorithm’s robustness.Furthermore,the algorithm exhibits low computational complexity,with the mean encoding and the mean decoding time differentials during experimental video processing being 3.934 and 2.273 s,respectively,underscoring its practical utility.展开更多
To address the challenges of video copyright protection and ensure the perfect recovery of original video,we propose a dual-domain watermarking scheme for digital video,inspired by Robust Reversible Watermarking(RRW)t...To address the challenges of video copyright protection and ensure the perfect recovery of original video,we propose a dual-domain watermarking scheme for digital video,inspired by Robust Reversible Watermarking(RRW)technology used in digital images.Our approach introduces a parameter optimization strategy that incre-mentally adjusts scheme parameters through attack simulation fitting,allowing for adaptive tuning of experimental parameters.In this scheme,the low-frequency Polar Harmonic Transform(PHT)moment is utilized as the embedding domain for robust watermarking,enhancing stability against simulation attacks while implementing the parameter optimization strategy.Through extensive attack simulations across various digital videos,we identify the optimal low-frequency PHT moment using adaptive normalization.Subsequently,the embedding parameters for robust watermarking are adaptively adjusted to maximize robustness.To address computational efficiency and practical requirements,the unnormalized high-frequency PHT moment is selected as the embedding domain for reversible watermarking.We optimize the traditional single-stage extended transform dithering modulation(STDM)to facilitate multi-stage embedding in the dual-domain watermarking process.In practice,the video embedded with a robust watermark serves as the candidate video.This candidate video undergoes simulation according to the parameter optimization strategy to balance robustness and embedding capacity,with adaptive determination of embedding strength.The reversible watermarking is formed by combining errors and other information,utilizing recursive coding technology to ensure reversibility without attacks.Comprehensive analyses of multiple performance indicators demonstrate that our scheme exhibits strong robustness against Common Signal Processing(CSP)and Geometric Deformation(GD)attacks,outperforming other advanced video watermarking algorithms under similar conditions of invisibility,reversibility,and embedding capacity.This underscores the effectiveness and feasibility of our attack simulation fitting strategy.展开更多
基金supported by the Key R&D Program of Shaanxi Province,China(Grant Nos.2022GY-274,2023-YBSF-505)the National Natural Science Foundation of China(Grant No.62273273).
文摘Recovering high-quality inscription images from unknown and complex inscription noisy images is a challenging research issue.Different fromnatural images,character images pay more attention to stroke information.However,existingmodelsmainly consider pixel-level informationwhile ignoring structural information of the character,such as its edge and glyph,resulting in reconstructed images with mottled local structure and character damage.To solve these problems,we propose a novel generative adversarial network(GAN)framework based on an edge-guided generator and a discriminator constructed by a dual-domain U-Net framework,i.e.,EDU-GAN.Unlike existing frameworks,the generator introduces the edge extractionmodule,guiding it into the denoising process through the attention mechanism,which maintains the edge detail of the restored inscription image.Moreover,a dual-domain U-Net-based discriminator is proposed to learn the global and local discrepancy between the denoised and the label images in both image and morphological domains,which is helpful to blind denoising tasks.The proposed dual-domain discriminator and generator for adversarial training can reduce local artifacts and keep the denoised character structure intact.Due to the lack of a real-inscription image,we built the real-inscription dataset to provide an effective benchmark for studying inscription image denoising.The experimental results show the superiority of our method both in the synthetic and real-inscription datasets.
基金supported by the National Natural Science Foundation of China under Grant 62072256Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant Nos.NY221057,NY220003).
文摘Unmanned Aerial Vehicle(UAV)tracking has been possible because of the growth of intelligent information technology in smart cities,making it simple to gather data at any time by dynamically monitoring events,people,the environment,and other aspects in the city.The traditional filter creates a model to address the boundary effect and time filter degradation issues in UAV tracking operations.But these methods ignore the loss of data integrity terms since they are overly dependent on numerous explicit previous regularization terms.In light of the aforementioned issues,this work suggests a dual-domain Jensen-Shannon divergence correlation filter(DJSCF)model address the probability-based distance measuring issue in the event of filter degradation.The two-domain weighting matrix and JS divergence constraint are combined to lessen the impact of sample imbalance and distortion.Two new tracking models that are based on the perspectives of the actual probability filter distribution and observation probability filter distribution are proposed to translate the statistical distance in the online tracking model into response fitting.The model is roughly transformed into a linear equality constraint issue in the iterative solution,which is then solved by the alternate direction multiplier method(ADMM).The usefulness and superiority of the suggested strategy have been shown by a vast number of experimental findings.
基金supported by National Nature Science Foundation of China(No.62276093)in part by Natural Science Foundation of Shandong Province,China(No.2022MF86).
文摘Photoplethysmography(PPG)biometrics have received considerable attention.Although deep learning has achieved good performance for PPG biometrics,several challenges remain open:1)How to effectively extract the feature fusion representation from time and frequency PPG signals.2)How to effectively capture a series of PPG signal transition information.3)How to extract timevarying information from one-dimensional time-frequency sequential data.To address these challenges,we propose a dual-domain and multiscale fusion deep neural network(DMFDNN)for PPG biometric recognition.The DMFDNN is mainly composed of a two-branch deep learning framework for PPG biometrics,which can learn the time-varying and multiscale discriminative features from the time and frequency domains.Meanwhile,we design a multiscale extraction module to capture transition information,which consists of multiple convolution layers with different receptive fields for capturing multiscale transition information.In addition,the dual-domain attention module is proposed to strengthen the domain of greater contributions from time-domain and frequency-domain data for PPG biometrics.Experiments on the four datasets demonstrate that DMFDNN outperforms the state-of-the-art methods for PPG biometrics.
基金supported in part by the National Natural Science Foundation of China under Grants 62202496,62272478the Basic Frontier Innovation Project of Engineering university of People Armed Police under Grants WJY202314,WJY202221.
文摘The proposed robust reversible watermarking algorithm addresses the compatibility challenges between robustness and reversibility in existing video watermarking techniques by leveraging scene smoothness for frame grouping videos.Grounded in the H.264 video coding standard,the algorithm first employs traditional robust watermark stitching technology to embed watermark information in the low-frequency coefficient domain of the U channel.Subsequently,it utilizes histogram migration techniques in the high-frequency coefficient domain of the U channel to embed auxiliary information,enabling successful watermark extraction and lossless recovery of the original video content.Experimental results demonstrate the algorithm’s strong imperceptibility,with each embedded frame in the experimental videos achieving a mean peak signal-to-noise ratio of 49.3830 dB and a mean structural similarity of 0.9996.Compared with the three comparison algorithms,the performance of the two experimental indexes is improved by 7.59%and 0.4%on average.At the same time,the proposed algorithm has strong robustness to both offline and online attacks:In the face of offline attacks,the average normalized correlation coefficient between the extracted watermark and the original watermark is 0.9989,and the average bit error rate is 0.0089.In the face of online attacks,the normalized correlation coefficient between the extracted watermark and the original watermark is 0.8840,and the mean bit error rate is 0.2269.Compared with the three comparison algorithms,the performance of the two experimental indexes is improved by 1.27%and 18.16%on average,highlighting the algorithm’s robustness.Furthermore,the algorithm exhibits low computational complexity,with the mean encoding and the mean decoding time differentials during experimental video processing being 3.934 and 2.273 s,respectively,underscoring its practical utility.
基金supported in part by the National Natural Science Foundation of China under Grant 62202496,62272478the Basic Frontier Innovation Project of Engineering University of People Armed Police under Grant WJY202314,WJY202221.
文摘To address the challenges of video copyright protection and ensure the perfect recovery of original video,we propose a dual-domain watermarking scheme for digital video,inspired by Robust Reversible Watermarking(RRW)technology used in digital images.Our approach introduces a parameter optimization strategy that incre-mentally adjusts scheme parameters through attack simulation fitting,allowing for adaptive tuning of experimental parameters.In this scheme,the low-frequency Polar Harmonic Transform(PHT)moment is utilized as the embedding domain for robust watermarking,enhancing stability against simulation attacks while implementing the parameter optimization strategy.Through extensive attack simulations across various digital videos,we identify the optimal low-frequency PHT moment using adaptive normalization.Subsequently,the embedding parameters for robust watermarking are adaptively adjusted to maximize robustness.To address computational efficiency and practical requirements,the unnormalized high-frequency PHT moment is selected as the embedding domain for reversible watermarking.We optimize the traditional single-stage extended transform dithering modulation(STDM)to facilitate multi-stage embedding in the dual-domain watermarking process.In practice,the video embedded with a robust watermark serves as the candidate video.This candidate video undergoes simulation according to the parameter optimization strategy to balance robustness and embedding capacity,with adaptive determination of embedding strength.The reversible watermarking is formed by combining errors and other information,utilizing recursive coding technology to ensure reversibility without attacks.Comprehensive analyses of multiple performance indicators demonstrate that our scheme exhibits strong robustness against Common Signal Processing(CSP)and Geometric Deformation(GD)attacks,outperforming other advanced video watermarking algorithms under similar conditions of invisibility,reversibility,and embedding capacity.This underscores the effectiveness and feasibility of our attack simulation fitting strategy.