The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the ...The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.展开更多
The hysteresis control combined with PWM control non-inverting buck-boost was proposed to improve the light load efficiency and power density.The constant inductor current control(CICC)was established to mitigate the ...The hysteresis control combined with PWM control non-inverting buck-boost was proposed to improve the light load efficiency and power density.The constant inductor current control(CICC)was established to mitigate the dependence on the external components and device variation and make smooth transition between hysteresis control loop and pulse width modulation(PWM)control loop.The small signal model was deduced for the buck and boost operation mode.The inductor current slope control(ICSC)was proposed to implement the automatic mode transition between buck and boost mode in one switching cycle.The results show that the converter prototype has good dynamic response capability,achieving 94%efficiency and 95%peak efficiency at full 10 A load current.展开更多
The performance of photovoltaic(PV)modules is affected by environmental factors such as irradiance and temperature,which can lead to a decrease in output performance or even damage.This study proposes an improved form...The performance of photovoltaic(PV)modules is affected by environmental factors such as irradiance and temperature,which can lead to a decrease in output performance or even damage.This study proposes an improved formula for calculating the real maximum power of PV modules by analysing the influence of irradiance and temperature.A simulation model is developed using PLECS software to simulate the global maximum power of PV modules under different environmental conditions and the results are compared with the calculated real maximum power.A power optimization scheme for PV modules is then proposed based on current equalization and constant voltage control.This scheme employs a single-switch multi-winding forward-flyback converter to equalize the mismatched currents between cell strings,thereby enhancing the output performance.Traditional proportional-integral controllers are utilized to achieve constant voltage control and obtain the real maximum power of PV modules.Simulation models are built in the PLECS simulation platform to evaluate the performance of a global maximum power point tracking scheme based on the traditional perturb-and-observe(TPO)algorithm with current equalization,a segment perturb-and-observe algorithm without current equalization,and the proposed power optimization scheme.The simulation results demonstrate that the proposed constant voltage control has greater efficiency than the TPO algorithm.The proposed scheme achieves a significant improvement in efficiency,with a 27.87%increase compared with the segment perturb-and-observe algorithm without current equalization.展开更多
An error back propagation (BP) neural network prediction model was established for the shunt current compensation in series resistance spot welding. The input variables for the neural network consist of the resistiv...An error back propagation (BP) neural network prediction model was established for the shunt current compensation in series resistance spot welding. The input variables for the neural network consist of the resistivity of the material, the thickness of workpiece and the spot spacing, and the shunt rate is outputted. A simplified calculation for the shunt rate was presented based on the feature of the constant-current resistance spot welding and the variation of the resistance in resistance spot welding process, and then the data generated by simplified calculation were used to train and adjust the neural network model. The neural network model proposed was used to predict the shunt rate in the spot welding of 20# mlid steel (in Chinese classification) (in 2. 0 mm thickness) and 10# mild steel (in 1.5 mm and 1.0 mm thickness). The maximum relative prediction errors are, respectively, 2. 83%, 1.77% and 3.67%. Shunt current compensation experiments were peoCormed based on the neural network prediction model proposed to check the diameter difference of nuggets. Experimental results show that maximum nugget diameter deviation is less than 4% for both 10# and 20# mlid steels with spot spacing of 30 mm and 50 mm.展开更多
A 5.0-V 2.0-A flyback power supply controller providing constant-voltage (CV) and constant-current (CC) output regulation without the use of an optical coupler is presented. Dual-close-loop control is proposed her...A 5.0-V 2.0-A flyback power supply controller providing constant-voltage (CV) and constant-current (CC) output regulation without the use of an optical coupler is presented. Dual-close-loop control is proposed here due to its better regulation performance of tolerance over process and temperature compared with open loop control used in common. At the same time, the two modes, CC and CV, could switch to each other automatically and smoothly according to the output voltage level not sacrificing the regulation accuracy at the switching phase, which overcomes the drawback of the digital control scheme depending on a hysteresis comparator to change the mode. On-chip compensation using active capacitor multiplier technique is applied to stabilize the voltage loop, eliminate an additional package pin, and save on the die area. The system consumes as little as 100 mW at no-load condition without degrading the transient response performance by utilizing the adaptive switching frequency control mode. The proposed controller has been implemented in a commercial 0.35μm 40-V BCD process, and the active chip area is 1.5×1.0 mm^2. The total error of the output voltage due to line and load variations is less than 4-1.7%.展开更多
The change of the over-current protection point of the power switches, caused by slope compensation, is analyzed in detail. It is discovered that the peak current protecting value increases as the duty cycle decreases...The change of the over-current protection point of the power switches, caused by slope compensation, is analyzed in detail. It is discovered that the peak current protecting value increases as the duty cycle decreases. As a result, the safety operation of the switches is damaged greatly. A novel solution to improve over-current protection with constant peak current limitation is proposed by inducing synchronous slope compensation into the current limit function instead of the original constant voltage. The design principle and method of the protection circuit based on a UC3846 PWM controller for the interleaved dual-forward converter is presented. Experimental results are given to verify the analysis.展开更多
SWISS整流器因其优越的性能被广泛应用于充电桩、分布式直流电源等场合。其首要的控制目标是维持稳定的直流侧输出电压、正弦且对称的交流侧三相电流以及网侧单位功率因数。然而,当电网出现幅值跌落时,基于传统的控制方法很难同时实现上...SWISS整流器因其优越的性能被广泛应用于充电桩、分布式直流电源等场合。其首要的控制目标是维持稳定的直流侧输出电压、正弦且对称的交流侧三相电流以及网侧单位功率因数。然而,当电网出现幅值跌落时,基于传统的控制方法很难同时实现上述3个控制目标。因此,该文分别提出适用于电网幅值跌落的输出电压恒定控制(constant output voltage control,COVC)方法和电流正弦对称控制(sinusoidal and symmetrical current control,SSCC)方法。前者可实现直流侧输出电压恒定无波动,但无法实现网侧电流的正弦且对称。后者可实现网侧电流正弦且对称,但无法实现直流侧电压输出恒定无波动。在此基础上,该文结合这2种控制方法的优势进一步提出一种改进的协调优化控制(improved coordination and optimization control,ICOC)方法,可实现网侧处于单位功率因数的同时,在直流侧输出电压恒定无波动和网侧电流正弦且对称之间进行协调优化,实验结果证明ICOC方法相较于COVC和SSCC具有显著的优势,与该文的理论分析一致。展开更多
基于脉冲密度调制PDM(pulse density modulation)的双边协同控制使得无线电能传输WPT(wireless power transfer)系统在耦合系数和负载阻抗变化的情况下能够保持最大效率传输,但是在系统启动及电池恒流恒压充电切换时会产生远高于额定值...基于脉冲密度调制PDM(pulse density modulation)的双边协同控制使得无线电能传输WPT(wireless power transfer)系统在耦合系数和负载阻抗变化的情况下能够保持最大效率传输,但是在系统启动及电池恒流恒压充电切换时会产生远高于额定值的电流/电压超调。为了解决超调问题,保证电池充电稳定性,提出了一种抗饱和控制策略。首先,基于WPT系统的等效电路模型分析最大效率点跟踪的工作原理;然后,结合WPT系统两侧控制量的协同工作过程,解析系统启动及电池恒流恒压充电切换时的超调现象,给出恒流恒压控制器设计方法,将反计算抗饱和算法与控制器设计相结合,提出抗饱和控制策略;最后,搭建了仿真模型,验证所提出的抗饱和策略能够有效抑制控制器饱和导致的超调,减少系统到达稳态的时间,降低电流/电压的超调带来的元器件应力。展开更多
为解决HID灯的老化及灯的伏安特性变化引起的功率漂移问题,基于Buck降压变换器的平均电流控制模式,设计并制作了一款具有恒功率控制能力的数字控制电子镇流器驱动电路,包含两个控制环路:内电流环路用于维持稳定驱动,外功率环路用于维持...为解决HID灯的老化及灯的伏安特性变化引起的功率漂移问题,基于Buck降压变换器的平均电流控制模式,设计并制作了一款具有恒功率控制能力的数字控制电子镇流器驱动电路,包含两个控制环路:内电流环路用于维持稳定驱动,外功率环路用于维持灯在其使用期间的功率恒定,并根据Buck降压变换器DCM模式下的小信号模型,以PI算法作为数字补偿器,完成补偿环路设计,保证电路输出稳定性。为抑制声共振,该电路结构采用三级式结构的电子镇流器,以低频方波驱动。设计和测试结果表明,该电子镇流器驱动电路可实现450 W的恒功率控制,误差值小于3%。该电子镇流器驱动电路结构简单,可靠性高,可适用于450 W HID灯驱动。展开更多
文摘The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.
文摘The hysteresis control combined with PWM control non-inverting buck-boost was proposed to improve the light load efficiency and power density.The constant inductor current control(CICC)was established to mitigate the dependence on the external components and device variation and make smooth transition between hysteresis control loop and pulse width modulation(PWM)control loop.The small signal model was deduced for the buck and boost operation mode.The inductor current slope control(ICSC)was proposed to implement the automatic mode transition between buck and boost mode in one switching cycle.The results show that the converter prototype has good dynamic response capability,achieving 94%efficiency and 95%peak efficiency at full 10 A load current.
文摘The performance of photovoltaic(PV)modules is affected by environmental factors such as irradiance and temperature,which can lead to a decrease in output performance or even damage.This study proposes an improved formula for calculating the real maximum power of PV modules by analysing the influence of irradiance and temperature.A simulation model is developed using PLECS software to simulate the global maximum power of PV modules under different environmental conditions and the results are compared with the calculated real maximum power.A power optimization scheme for PV modules is then proposed based on current equalization and constant voltage control.This scheme employs a single-switch multi-winding forward-flyback converter to equalize the mismatched currents between cell strings,thereby enhancing the output performance.Traditional proportional-integral controllers are utilized to achieve constant voltage control and obtain the real maximum power of PV modules.Simulation models are built in the PLECS simulation platform to evaluate the performance of a global maximum power point tracking scheme based on the traditional perturb-and-observe(TPO)algorithm with current equalization,a segment perturb-and-observe algorithm without current equalization,and the proposed power optimization scheme.The simulation results demonstrate that the proposed constant voltage control has greater efficiency than the TPO algorithm.The proposed scheme achieves a significant improvement in efficiency,with a 27.87%increase compared with the segment perturb-and-observe algorithm without current equalization.
基金Acknowledgements The authors would like to thank for the financial support from the National Natural Science Foundation of China through document 51275418. The authors would also like to acknowledge professor Yang Siqian for providing discussion of the results for this study.
文摘An error back propagation (BP) neural network prediction model was established for the shunt current compensation in series resistance spot welding. The input variables for the neural network consist of the resistivity of the material, the thickness of workpiece and the spot spacing, and the shunt rate is outputted. A simplified calculation for the shunt rate was presented based on the feature of the constant-current resistance spot welding and the variation of the resistance in resistance spot welding process, and then the data generated by simplified calculation were used to train and adjust the neural network model. The neural network model proposed was used to predict the shunt rate in the spot welding of 20# mlid steel (in Chinese classification) (in 2. 0 mm thickness) and 10# mild steel (in 1.5 mm and 1.0 mm thickness). The maximum relative prediction errors are, respectively, 2. 83%, 1.77% and 3.67%. Shunt current compensation experiments were peoCormed based on the neural network prediction model proposed to check the diameter difference of nuggets. Experimental results show that maximum nugget diameter deviation is less than 4% for both 10# and 20# mlid steels with spot spacing of 30 mm and 50 mm.
文摘A 5.0-V 2.0-A flyback power supply controller providing constant-voltage (CV) and constant-current (CC) output regulation without the use of an optical coupler is presented. Dual-close-loop control is proposed here due to its better regulation performance of tolerance over process and temperature compared with open loop control used in common. At the same time, the two modes, CC and CV, could switch to each other automatically and smoothly according to the output voltage level not sacrificing the regulation accuracy at the switching phase, which overcomes the drawback of the digital control scheme depending on a hysteresis comparator to change the mode. On-chip compensation using active capacitor multiplier technique is applied to stabilize the voltage loop, eliminate an additional package pin, and save on the die area. The system consumes as little as 100 mW at no-load condition without degrading the transient response performance by utilizing the adaptive switching frequency control mode. The proposed controller has been implemented in a commercial 0.35μm 40-V BCD process, and the active chip area is 1.5×1.0 mm^2. The total error of the output voltage due to line and load variations is less than 4-1.7%.
文摘The change of the over-current protection point of the power switches, caused by slope compensation, is analyzed in detail. It is discovered that the peak current protecting value increases as the duty cycle decreases. As a result, the safety operation of the switches is damaged greatly. A novel solution to improve over-current protection with constant peak current limitation is proposed by inducing synchronous slope compensation into the current limit function instead of the original constant voltage. The design principle and method of the protection circuit based on a UC3846 PWM controller for the interleaved dual-forward converter is presented. Experimental results are given to verify the analysis.
文摘SWISS整流器因其优越的性能被广泛应用于充电桩、分布式直流电源等场合。其首要的控制目标是维持稳定的直流侧输出电压、正弦且对称的交流侧三相电流以及网侧单位功率因数。然而,当电网出现幅值跌落时,基于传统的控制方法很难同时实现上述3个控制目标。因此,该文分别提出适用于电网幅值跌落的输出电压恒定控制(constant output voltage control,COVC)方法和电流正弦对称控制(sinusoidal and symmetrical current control,SSCC)方法。前者可实现直流侧输出电压恒定无波动,但无法实现网侧电流的正弦且对称。后者可实现网侧电流正弦且对称,但无法实现直流侧电压输出恒定无波动。在此基础上,该文结合这2种控制方法的优势进一步提出一种改进的协调优化控制(improved coordination and optimization control,ICOC)方法,可实现网侧处于单位功率因数的同时,在直流侧输出电压恒定无波动和网侧电流正弦且对称之间进行协调优化,实验结果证明ICOC方法相较于COVC和SSCC具有显著的优势,与该文的理论分析一致。
文摘基于脉冲密度调制PDM(pulse density modulation)的双边协同控制使得无线电能传输WPT(wireless power transfer)系统在耦合系数和负载阻抗变化的情况下能够保持最大效率传输,但是在系统启动及电池恒流恒压充电切换时会产生远高于额定值的电流/电压超调。为了解决超调问题,保证电池充电稳定性,提出了一种抗饱和控制策略。首先,基于WPT系统的等效电路模型分析最大效率点跟踪的工作原理;然后,结合WPT系统两侧控制量的协同工作过程,解析系统启动及电池恒流恒压充电切换时的超调现象,给出恒流恒压控制器设计方法,将反计算抗饱和算法与控制器设计相结合,提出抗饱和控制策略;最后,搭建了仿真模型,验证所提出的抗饱和策略能够有效抑制控制器饱和导致的超调,减少系统到达稳态的时间,降低电流/电压的超调带来的元器件应力。
文摘为解决HID灯的老化及灯的伏安特性变化引起的功率漂移问题,基于Buck降压变换器的平均电流控制模式,设计并制作了一款具有恒功率控制能力的数字控制电子镇流器驱动电路,包含两个控制环路:内电流环路用于维持稳定驱动,外功率环路用于维持灯在其使用期间的功率恒定,并根据Buck降压变换器DCM模式下的小信号模型,以PI算法作为数字补偿器,完成补偿环路设计,保证电路输出稳定性。为抑制声共振,该电路结构采用三级式结构的电子镇流器,以低频方波驱动。设计和测试结果表明,该电子镇流器驱动电路可实现450 W的恒功率控制,误差值小于3%。该电子镇流器驱动电路结构简单,可靠性高,可适用于450 W HID灯驱动。