Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore s...Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.展开更多
KIT‐6 mesoporous silica aged at 40,100,and 150°C were used as hard templates to prepare different mesoporous MnO2 catalysts,marked as Mn‐40,Mn‐100,and Mn‐150,respectively.The catalytic activities of these cat...KIT‐6 mesoporous silica aged at 40,100,and 150°C were used as hard templates to prepare different mesoporous MnO2 catalysts,marked as Mn‐40,Mn‐100,and Mn‐150,respectively.The catalytic activities of these catalysts and the effect of pore sizes on ethanol catalytic oxidation were investigated.Mn‐40,Mn‐100,and Mn‐150 have triple,double,and single pore systems,respectively.On decreasing the aging temperature of KIT‐6,the pore sizes of KIT‐6 decrease and that of mesoporous MnO2 catalysts increase.The pore sizes and catalytic activities increase in the order:Mn‐40>Mn‐100>Mn‐150.Mn‐40 catalyst has a higher TOF(0.11 s–1 at 120°C)and the best catalytic activity for ethanol oxidation because of a bigger pore size with three pore systems with maximum distribution at 1.9,3.4,and 6.6 nm,decrease in symmetry and degree of order,more surface lattice oxygen species,oxygen vacancies resulting from more Mn3+ions,and better low‐temperature reducibility.展开更多
Dysfunction of the cystic fibrosis transmembrane con-ductance regulator(CFTR) chloride channel causes cys-tic fibrosis, while inappropriate activity of this channeloccurs in secretory diarrhea and polycystic kidney di...Dysfunction of the cystic fibrosis transmembrane con-ductance regulator(CFTR) chloride channel causes cys-tic fibrosis, while inappropriate activity of this channeloccurs in secretory diarrhea and polycystic kidney dis-ease. Drugs that interact directly with CFTR are there-fore of interest in the treatment of a number of diseasestates. This review focuses on one class of small mol-ecules that interacts directly with CFTR, namely inhibi-tors that act by directly blocking chloride movementthrough the open channel pore. In theory such com-pounds could be of use in the treatment of diarrheaand polycystic kidney disease, however in practice allknown substances acting by this mechanism to inhibitCFTR function lack either the potency or specificity forin vivo use. Nevertheless, this theoretical pharmaco-logical usefulness set the scene for the developmentof more potent, specific CFTR inhibitors. Biophysically,open channel blockers have proven most useful as ex-perimental probes of the structure and function of theCFTR chloride channel pore. Most importantly, the useof these blockers has been fundamental in developing afunctional model of the pore that includes a wide innervestibule that uses positively charged amino acid sidechains to attract both permeant and blocking anionsfrom the cell cytoplasm. CFTR channels are also subjectto this kind of blocking action by endogenous anionspresent in the cell cytoplasm, and recently this blocking effect has been suggested to play a role in the physio-logical control of CFTR channel function, in particular as a novel mechanism linking CFTR function dynamically to the composition of epithelial cell secretions. It has also been suggested that future drugs could target this same pathway as a way of pharmacologically increasing CFTR activity in cystic fibrosis. Studying open channel blockers and their mechanisms of action has resulted in significant advances in our understanding of CFTR as a pharmacological target in disease states, of CFTR chan-nel structure and function, and of how CFTR activity is controlled by its local environment.展开更多
To identify the type of main flow channels of complex porous media in oil and gas reservoirs,the"main flow channel index"is defined as the ratio of comprehensive permeability obtained from well test to matri...To identify the type of main flow channels of complex porous media in oil and gas reservoirs,the"main flow channel index"is defined as the ratio of comprehensive permeability obtained from well test to matrix permeability obtained from core analysis or well logging.Meanwhile,a mathematical model is established based on equivalent flow assumption,the classification method for main flow channels is put forward,and quantitative characterization of main flow channels is realized.The method has been verified by analysis of typical gas reservoirs.The study results show that the"main flow channel index"can quantitatively classify types of flow channels.If the index is less than 3,the matrix pore is the main flow channel;if the index is between 3 and 20,the fracture is the main flow channel and the matrix pore acts as the supplement one;if the index is more than 20,the fracture is the only seepage channel.The dynamic analysis of typical gas reservoirs shows that the"main flow channel index"can be used to identify the type of flow channel in complex porous media,guiding the classified development of gas reservoirs,and avoiding development risk.展开更多
High-voltage electric pulse(HVEP)is an innovative low-energy and high-efficiency technique.However,the underlying physics of the electrical breakdown within the rock,and the coupling mechanism between the various phys...High-voltage electric pulse(HVEP)is an innovative low-energy and high-efficiency technique.However,the underlying physics of the electrical breakdown within the rock,and the coupling mechanism between the various physical fields involved in HVEP still need to be further understood.In this study,we establish a 2D numerical model of multi-physical field coupling of the electrical breakdown of porous rock with randomly distributed pores to investigate the effect of pore characteristics(porosity,pore media composition)on the partial electrical breakdown of rock(i.e.the generation of a plasma channel inside the rock).Our findings indicate that the generation of a plasma channel is directionally selective and extends in the direction of a weak electrical breakdown intensity.As the porosity of the rock increases,so does the intensity of the electric field in the‘electrical damage’region—the greater the porosity,the greater the effectiveness of rock-breaking.As the fraction of pore fluid(S_(water)/S_(air))gradually declines,the generation time of the plasma channel decreases,and the efficacy of rock-breaking by HVEP increases.In addition,in this study,we conducted an indoor experiment utilizing an electric pulse drill to break down the rock in order to recreate the growth mode of the plasma channel in the rock.Moreover,the experimental results are consistent with the simulation results.In addition,the development of this type of partial electrical breakdown is confirmed to be related to electrode polarity and pore characteristics via the experiment of the symmetrical needle-needle electrode arrangement,which further demonstrates the mechanism of partial electrical breakdown.This research is significant for comprehending the process of electric impulse rock-breaking and gives theoretical guidance and technological support for advancing electric impulse drilling technology.展开更多
In order to study the permeability and water-resisting ability of the strata on the top of the Ordovician in Longgu Coal Mine, this paper tested the permeability and porosity of the strata, investigated the fracture a...In order to study the permeability and water-resisting ability of the strata on the top of the Ordovician in Longgu Coal Mine, this paper tested the permeability and porosity of the strata, investigated the fracture and pore structure features of the strata, and identified the main channels which govern the permeability and water-resisting ability of the strata. The permeability of the upper, central and lower strata shows as 2.0504 × 10^-3-2.782762× 10^-3, 4.1092 × 10^-3 -7.3387 × 10^-3 and 2.0891 ×10^-3-3.2705 × 10-3 μm^2, respectively, and porosity of that is 0.6786-0.9197%, 0.3109-0.3951% and 0.9829-1.8655%, respectively. The results indicate that: (I) the main channels of the relative water-resisting layer are the pore throats with a diameter more than 6 μm; (2) the major proportion of pore throats in the vertical flow channel and the permeability first increases and then sharply decreases; (3) the fractures occurring from the top to 20 m in depth of the strata were filled and there occurred almost no fracture under the depth of 40 m; and (4) the ratio of turning point of the main flow channel in the strata on top of Ordovician can be used to confirm the thickness of filled water-resisting lavers.展开更多
A chiral low-molecular-weight gelator(LMWG) L-16Ala5PyPF6 was synthesized from L-alanine, which can cause physical gel in n-propanol, ethyl acetate, butylene oxide, water, benzene, 1,4-dioxane and chloroform. The sol-...A chiral low-molecular-weight gelator(LMWG) L-16Ala5PyPF6 was synthesized from L-alanine, which can cause physical gel in n-propanol, ethyl acetate, butylene oxide, water, benzene, 1,4-dioxane and chloroform. The sol-gel reactions were carried out in a mixture of stronger ammonia water and n-propanol at the volume ratio of 2:8. Single-handed twisted silica nanostructures with pore channels vertical to the wall surfaces were first prepared through a single-templating approach comparing with the reported double template method. The formation mechanism of radial pore structure was studied by transmission electron microscopy at different reaction time intervals, which indicated that the radial pore structure was formed via a structural transition in the sol-gel transcription process.展开更多
High-strength pervious concrete(HSPC) with porosity ranging from 0.08% to 2.011% was prepared. The mechanical properties and rainstorm waterlogging resistance of HSPC were evaluated,and a design method of HSPC pore ch...High-strength pervious concrete(HSPC) with porosity ranging from 0.08% to 2.011% was prepared. The mechanical properties and rainstorm waterlogging resistance of HSPC were evaluated,and a design method of HSPC pore characteristics(porosity and pore diameter) based on the mechanical properties and rainstorm waterlogging resistance was proposed. The results showed that the reduction of effective cross-sectional area caused by artificial channels was the main factor affecting flexural strength but had limited influence on compressive strength. Compared with the concrete matrix without artificial channels,the compressive strength of HSPC with porosity of 2.011% decreased by 7.4%, while the flexural strength decreased by 48.3%. The permeability coefficient of HSPC can reach 16.35 mm/s even at low porosity(2.011%).HSPC can meet the requirements of no rainstorm waterlogging, even if exposed to 100-year rainstorms. When the mechanical properties and rainstorm waterlogging resistance are compromised, the recommended porosity ranges from 1.1% to 3.5%, and the recommended pore diameter ranges from 0.8 to 2.7 mm.展开更多
As the key component of electrochemical energy storage devices, an electrode with superior ions transport pores is the important premise for high electrochemical performance. In this paper, we developed a unique solut...As the key component of electrochemical energy storage devices, an electrode with superior ions transport pores is the important premise for high electrochemical performance. In this paper, we developed a unique solution process to prepare freestanding TiO_2/graphene hydrogel electrode with tunable density and porous structures. By incorporating room temperature ionic liquids(RTILs), even upon drying, the non-volatile RTILs that remained in the gel film would preserve the efficient ion transport channels and prevent the electrode from closely stacking, to develop dense yet porous structures. As a result, the dense TiO_2/graphene gel film as an electrode for lithium ion battery displayed a good gravimetric electrochemical performance and more importantly a high volumetric performance.展开更多
基金supported by the National Key Research and Development Program of China (Grant No.2018YFA0702400)the National Natural Science Foundation of China (Grant No.52174050)+1 种基金the Natural Science Foundation of Shandong Province (Grant No.ZR2020ME088)the National Natural Science Foundation of Qingdao (Grant No.23-2-1-227-zyyd-jch)。
文摘Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.
基金supported by the National Key Research and Development Program Foundation of China(2016YFC0209203)the National Natural Science Foundation of China(21707130,21325731)~~
文摘KIT‐6 mesoporous silica aged at 40,100,and 150°C were used as hard templates to prepare different mesoporous MnO2 catalysts,marked as Mn‐40,Mn‐100,and Mn‐150,respectively.The catalytic activities of these catalysts and the effect of pore sizes on ethanol catalytic oxidation were investigated.Mn‐40,Mn‐100,and Mn‐150 have triple,double,and single pore systems,respectively.On decreasing the aging temperature of KIT‐6,the pore sizes of KIT‐6 decrease and that of mesoporous MnO2 catalysts increase.The pore sizes and catalytic activities increase in the order:Mn‐40>Mn‐100>Mn‐150.Mn‐40 catalyst has a higher TOF(0.11 s–1 at 120°C)and the best catalytic activity for ethanol oxidation because of a bigger pore size with three pore systems with maximum distribution at 1.9,3.4,and 6.6 nm,decrease in symmetry and degree of order,more surface lattice oxygen species,oxygen vacancies resulting from more Mn3+ions,and better low‐temperature reducibility.
文摘Dysfunction of the cystic fibrosis transmembrane con-ductance regulator(CFTR) chloride channel causes cys-tic fibrosis, while inappropriate activity of this channeloccurs in secretory diarrhea and polycystic kidney dis-ease. Drugs that interact directly with CFTR are there-fore of interest in the treatment of a number of diseasestates. This review focuses on one class of small mol-ecules that interacts directly with CFTR, namely inhibi-tors that act by directly blocking chloride movementthrough the open channel pore. In theory such com-pounds could be of use in the treatment of diarrheaand polycystic kidney disease, however in practice allknown substances acting by this mechanism to inhibitCFTR function lack either the potency or specificity forin vivo use. Nevertheless, this theoretical pharmaco-logical usefulness set the scene for the developmentof more potent, specific CFTR inhibitors. Biophysically,open channel blockers have proven most useful as ex-perimental probes of the structure and function of theCFTR chloride channel pore. Most importantly, the useof these blockers has been fundamental in developing afunctional model of the pore that includes a wide innervestibule that uses positively charged amino acid sidechains to attract both permeant and blocking anionsfrom the cell cytoplasm. CFTR channels are also subjectto this kind of blocking action by endogenous anionspresent in the cell cytoplasm, and recently this blocking effect has been suggested to play a role in the physio-logical control of CFTR channel function, in particular as a novel mechanism linking CFTR function dynamically to the composition of epithelial cell secretions. It has also been suggested that future drugs could target this same pathway as a way of pharmacologically increasing CFTR activity in cystic fibrosis. Studying open channel blockers and their mechanisms of action has resulted in significant advances in our understanding of CFTR as a pharmacological target in disease states, of CFTR chan-nel structure and function, and of how CFTR activity is controlled by its local environment.
文摘To identify the type of main flow channels of complex porous media in oil and gas reservoirs,the"main flow channel index"is defined as the ratio of comprehensive permeability obtained from well test to matrix permeability obtained from core analysis or well logging.Meanwhile,a mathematical model is established based on equivalent flow assumption,the classification method for main flow channels is put forward,and quantitative characterization of main flow channels is realized.The method has been verified by analysis of typical gas reservoirs.The study results show that the"main flow channel index"can quantitatively classify types of flow channels.If the index is less than 3,the matrix pore is the main flow channel;if the index is between 3 and 20,the fracture is the main flow channel and the matrix pore acts as the supplement one;if the index is more than 20,the fracture is the only seepage channel.The dynamic analysis of typical gas reservoirs shows that the"main flow channel index"can be used to identify the type of flow channel in complex porous media,guiding the classified development of gas reservoirs,and avoiding development risk.
基金supported by National Natural Science Foundation of China(Nos.52034006,52004229,52225401 and52274231)Regional Innovation Cooperation Project of Sichuan Province(No.2022YFQ0059)+1 种基金Natural Science Foundation of Sichuan Province(No.23NSFSC2099)Science and Technology Strategic Cooperation Project between Nanchong City and Southwest Petroleum University(No.SXHZ004)。
文摘High-voltage electric pulse(HVEP)is an innovative low-energy and high-efficiency technique.However,the underlying physics of the electrical breakdown within the rock,and the coupling mechanism between the various physical fields involved in HVEP still need to be further understood.In this study,we establish a 2D numerical model of multi-physical field coupling of the electrical breakdown of porous rock with randomly distributed pores to investigate the effect of pore characteristics(porosity,pore media composition)on the partial electrical breakdown of rock(i.e.the generation of a plasma channel inside the rock).Our findings indicate that the generation of a plasma channel is directionally selective and extends in the direction of a weak electrical breakdown intensity.As the porosity of the rock increases,so does the intensity of the electric field in the‘electrical damage’region—the greater the porosity,the greater the effectiveness of rock-breaking.As the fraction of pore fluid(S_(water)/S_(air))gradually declines,the generation time of the plasma channel decreases,and the efficacy of rock-breaking by HVEP increases.In addition,in this study,we conducted an indoor experiment utilizing an electric pulse drill to break down the rock in order to recreate the growth mode of the plasma channel in the rock.Moreover,the experimental results are consistent with the simulation results.In addition,the development of this type of partial electrical breakdown is confirmed to be related to electrode polarity and pore characteristics via the experiment of the symmetrical needle-needle electrode arrangement,which further demonstrates the mechanism of partial electrical breakdown.This research is significant for comprehending the process of electric impulse rock-breaking and gives theoretical guidance and technological support for advancing electric impulse drilling technology.
基金Financial supports for this work provided by the National Basic Research Program of China(2013CB227900)the Innovation of Graduate Student Training Project in Jiangsu Province of China(CXZZ13_0934)
文摘In order to study the permeability and water-resisting ability of the strata on the top of the Ordovician in Longgu Coal Mine, this paper tested the permeability and porosity of the strata, investigated the fracture and pore structure features of the strata, and identified the main channels which govern the permeability and water-resisting ability of the strata. The permeability of the upper, central and lower strata shows as 2.0504 × 10^-3-2.782762× 10^-3, 4.1092 × 10^-3 -7.3387 × 10^-3 and 2.0891 ×10^-3-3.2705 × 10-3 μm^2, respectively, and porosity of that is 0.6786-0.9197%, 0.3109-0.3951% and 0.9829-1.8655%, respectively. The results indicate that: (I) the main channels of the relative water-resisting layer are the pore throats with a diameter more than 6 μm; (2) the major proportion of pore throats in the vertical flow channel and the permeability first increases and then sharply decreases; (3) the fractures occurring from the top to 20 m in depth of the strata were filled and there occurred almost no fracture under the depth of 40 m; and (4) the ratio of turning point of the main flow channel in the strata on top of Ordovician can be used to confirm the thickness of filled water-resisting lavers.
基金Funded by the Science and Technology Innovation Plan of Wuhan Textile Universitythe Open Project of the State Key Laboratory of New Textile Materials and Advanced Processing Technologies (No.FZ2020003)the National Natural Science Foundation of China (No.51603155)。
文摘A chiral low-molecular-weight gelator(LMWG) L-16Ala5PyPF6 was synthesized from L-alanine, which can cause physical gel in n-propanol, ethyl acetate, butylene oxide, water, benzene, 1,4-dioxane and chloroform. The sol-gel reactions were carried out in a mixture of stronger ammonia water and n-propanol at the volume ratio of 2:8. Single-handed twisted silica nanostructures with pore channels vertical to the wall surfaces were first prepared through a single-templating approach comparing with the reported double template method. The formation mechanism of radial pore structure was studied by transmission electron microscopy at different reaction time intervals, which indicated that the radial pore structure was formed via a structural transition in the sol-gel transcription process.
基金Funded by the National Natural Science Foundation of China (No. 51878081)Natural Science Foundation of Jiangsu Province (No. BK20220626)+1 种基金Changzhou Leading Innovative Talent Introduction and Cultivation Project (No. CQ20210085)Postgraduate Research and Practice Innovation Program of Jiangsu Province (No. KYCX21_2847)。
文摘High-strength pervious concrete(HSPC) with porosity ranging from 0.08% to 2.011% was prepared. The mechanical properties and rainstorm waterlogging resistance of HSPC were evaluated,and a design method of HSPC pore characteristics(porosity and pore diameter) based on the mechanical properties and rainstorm waterlogging resistance was proposed. The results showed that the reduction of effective cross-sectional area caused by artificial channels was the main factor affecting flexural strength but had limited influence on compressive strength. Compared with the concrete matrix without artificial channels,the compressive strength of HSPC with porosity of 2.011% decreased by 7.4%, while the flexural strength decreased by 48.3%. The permeability coefficient of HSPC can reach 16.35 mm/s even at low porosity(2.011%).HSPC can meet the requirements of no rainstorm waterlogging, even if exposed to 100-year rainstorms. When the mechanical properties and rainstorm waterlogging resistance are compromised, the recommended porosity ranges from 1.1% to 3.5%, and the recommended pore diameter ranges from 0.8 to 2.7 mm.
基金supported by grants from the National Natural Science Foundation of China(21303251)Innovation Program of Shanghai Municipal Education Commission(16SG17)the Shenzhen Science and Technology Foundation(JCYJ201419122040621)
文摘As the key component of electrochemical energy storage devices, an electrode with superior ions transport pores is the important premise for high electrochemical performance. In this paper, we developed a unique solution process to prepare freestanding TiO_2/graphene hydrogel electrode with tunable density and porous structures. By incorporating room temperature ionic liquids(RTILs), even upon drying, the non-volatile RTILs that remained in the gel film would preserve the efficient ion transport channels and prevent the electrode from closely stacking, to develop dense yet porous structures. As a result, the dense TiO_2/graphene gel film as an electrode for lithium ion battery displayed a good gravimetric electrochemical performance and more importantly a high volumetric performance.