期刊文献+
共找到69篇文章
< 1 2 4 >
每页显示 20 50 100
EEG epileptic seizure detection and classification based on dual-tree complex wavelet transform and machine learning algorithms 被引量:4
1
作者 Itaf Ben Slimen Larbi Boubchir +1 位作者 Zouhair Mbarki Hassene Seddik 《The Journal of Biomedical Research》 CAS CSCD 2020年第3期151-161,共11页
The visual analysis of common neurological disorders such as epileptic seizures in electroencephalography(EEG) is an oversensitive operation and prone to errors,which has motivated the researchers to develop effective... The visual analysis of common neurological disorders such as epileptic seizures in electroencephalography(EEG) is an oversensitive operation and prone to errors,which has motivated the researchers to develop effective automated seizure detection methods.This paper proposes a robust automatic seizure detection method that can establish a veritable diagnosis of these diseases.The proposed method consists of three steps:(i) remove artifact from EEG data using Savitzky-Golay filter and multi-scale principal component analysis(MSPCA),(ii) extract features from EEG signals using signal decomposition representations based on empirical mode decomposition(EMD),discrete wavelet transform(DWT),and dual-tree complex wavelet transform(DTCWT) allowing to overcome the non-linearity and non-stationary of EEG signals,and(iii) allocate the feature vector to the relevant class(i.e.,seizure class "ictal" or free seizure class "interictal") using machine learning techniques such as support vector machine(SVM),k-nearest neighbor(k-NN),and linear discriminant analysis(LDA).The experimental results were based on two EEG datasets generated from the CHB-MIT database with and without overlapping process.The results obtained have shown the effectiveness of the proposed method that allows achieving a higher classification accuracy rate up to 100% and also outperforms similar state-of-the-art methods. 展开更多
关键词 ELECTROENCEPHALOGRAPHY epileptic seizure detection feature extraction dual-tree complex wavelet transform machine learning
下载PDF
Monitoring of Wind Turbine Blades Based on Dual-Tree Complex Wavelet Transform 被引量:1
2
作者 LIU Rongmei ZHOU Keyin YAO Entao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第1期140-152,共13页
Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors ar... Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors are easily applied to structural tests.Therefore,the monitoring of wind turbine blades by FBG sensors is proposed.The method is experimentally proved to be feasible.Five FBG sensors were set along the blade length in order to measure distributed strain.However,environmental or measurement noise may cover the structural signals.Dual-tree complex wavelet transform(DT-CWT)is suggested to wipe off the noise.The experimental studies indicate that the tested strain fluctuate distinctly as one of the blades is broken.The rotation period is about 1 s at the given working condition.However,the period is about 0.3 s if all the wind blades are in good conditions.Therefore,strain monitoring by FBG sensors could predict damage of a wind turbine blade system.Moreover,the studies indicate that monitoring of one blade is adequate to diagnose the status of a wind generator. 展开更多
关键词 wind turbine blade structural health monitoring(SHM) fiber Bragg grating(FBG) dual-tree complex wavelet transform(dt-cwt)
下载PDF
Image inpainting using complex 2-D dual-tree wavelet transform
3
作者 YANG Jian-bin 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2011年第1期70-76,共7页
The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our appr... The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our approach is based on Cai, Chan, Shen and Shen's framelet-based algorithm. The complex wavelet transform outperforms the standard real wavelet transform in the sense of shift-invariance, directionality and anti-aliasing. Numerical results illustrate the good performance of our algorithm. 展开更多
关键词 Image inpainting dual-tree complex wavelet transform wavelet shrinkage method.
下载PDF
Seismic signal analysis based on the dual-tree complex wavelet packet transform
4
作者 XIE Zhou-min(谢周敏) WANG En-fu(王恩福) +2 位作者 ZHANG Guo-hong(张国宏) ZHAO Guo-cun(赵国存) CHEN Xu-geng(陈旭庚) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第z1期117-122,共6页
We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex wavelet packet transform (CWPT) combine the merits of real wavelet packet transform with that of complex contin... We tried to apply the dual-tree complex wavelet packet transform in seismic signal analysis. The complex wavelet packet transform (CWPT) combine the merits of real wavelet packet transform with that of complex continuous wavelet transform (CCWT). It can not only pick up the phase information of signal, but also produce better ″focal- izing″ function if it matches the phase spectrum of signals analyzed. We here described the dual-tree CWPT algo- rithm, and gave the examples of simulation and actual seismic signals analysis. As shown by our results, the dual-tree CWPT is a very effective method in analyzing seismic signals with non-linear phase. 展开更多
关键词 dual-tree complex wavelet packet transform instantaneous characteristics seismicsignalanalysis
下载PDF
Defects Recognition of 3D Braided Composite Based on Dual-Tree Complex Wavelet Packet Transform
5
作者 贺晓丽 王瑞 《Journal of Donghua University(English Edition)》 EI CAS 2015年第5期749-752,共4页
Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of a... Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of advanced composites reinforced with 3D braided fabrics; the complex nature of 3D braided composites makes the evaluation of the quality of the product very difficult. In this investigation,a defect recognition platform for 3D braided composites evaluation was constructed based on dual-tree complex wavelet packet transform( DT-CWPT) and backpropagation( BP) neural networks. The defects in 3D braided composite materials were probed and detected by an ultrasonic sensing system. DT-CWPT method was used to analyze the ultrasonic scanning pulse signals,and the feature vectors of these signals were extracted into the BP neural networks as samples. The type of defects was identified and recognized with the characteristic ultrasonic wave spectra. The position of defects for the test samples can be determined at the same time. This method would have great potential to evaluate the quality of 3D braided composites. 展开更多
关键词 3D braided composite dual-tree complex wavelet packet transform(DT-CWPT) ultrasonic wave
下载PDF
NEW METHOD OF EXTRACTING WEAK FAILURE INFORMATION IN GEARBOX BY COMPLEX WAVELET DENOISING 被引量:19
6
作者 CHEN Zhixin XU Jinwu YANG Debin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期87-91,共5页
Because the extract of the weak failure information is always the difficulty and focus of fault detection. Aiming for specific statistical properties of complex wavelet coefficients of gearbox vibration signals, a new... Because the extract of the weak failure information is always the difficulty and focus of fault detection. Aiming for specific statistical properties of complex wavelet coefficients of gearbox vibration signals, a new signal-denoising method which uses local adaptive algorithm based on dual-tree complex wavelet transform (DT-CWT) is introduced to extract weak failure information in gear, especially to extract impulse components. By taking into account the non-Gaussian probability distribution and the statistical dependencies among wavelet coefficients of some signals, and by taking the advantage of near shift-invariance of DT-CWT, the higher signal-to-noise ratio (SNR) than common wavelet denoising methods can be obtained. Experiments of extracting periodic impulses in gearbox vibration signals indicate that the method can extract incipient fault feature and hidden information from heavy noise, and it has an excellent effect on identifying weak feature signals in gearbox vibration signals. 展开更多
关键词 dual-tree complex wavelet transform Signal-denoising Gear fault diagnosis Early fault detection
下载PDF
Novel Face Recognition Method by Combining Spatial Domain and Selected Complex Wavelet Features 被引量:1
7
作者 张强 蔡云泽 许晓鸣 《Journal of Donghua University(English Edition)》 EI CAS 2011年第3期285-290,共6页
A novel face recognition method based on fusion of spatial and frequency features was presented to improve recognition accuracy. Dual-Tree Complex Wavelet Transform derives desirable facial features to cope with the v... A novel face recognition method based on fusion of spatial and frequency features was presented to improve recognition accuracy. Dual-Tree Complex Wavelet Transform derives desirable facial features to cope with the variation due to the illumination and facial expression changes. By adopting spectral regression and complex fusion technologies respectively, two improved neighborhood preserving discriminant analysis feature extraction methods were proposed to capture the face manifold structures and locality discriminatory information. Extensive experiments have been made to compare the recognition performance of the proposed method with some popular dimensionality reduction methods on ORL and Yale face databases. The results verify the effectiveness of the proposed method. 展开更多
关键词 face recognition neighborhood preserving discriminant analysis spectral regression complex fusion dual-tree complex wavelet transform feature selection
下载PDF
Recognition of Group Activities Using Complex Wavelet Domain Based Cayley-Klein Metric Learning
8
作者 Gensheng Hu Min Li +2 位作者 Dong Liang Mingzhu Wan Wenxia Bao 《Journal of Beijing Institute of Technology》 EI CAS 2018年第4期592-603,共12页
A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet pac... A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet packet transform(NS-DTCWPT)is used to decompose the human images in videos into multi-scale and multi-resolution.An improved local binary pattern(ILBP)and an inner-distance shape context(IDSC)combined with bag-of-words model is adopted to extract the decomposed high and low frequency coefficient features.The extracted coefficient features of the training samples are used to optimize Cayley-Klein metric matrix by solving a nonlinear optimization problem.The group activities in videos are recognized by using the method of feature extraction and Cayley-Klein metric learning.Experimental results on behave video set,group activity video set,and self-built video set show that the proposed algorithm has higher recognition accuracy than the existing algorithms. 展开更多
关键词 video surveillance group activity recognition non-sampled dual-tree complex wavelet packet transform(NS-DTCWPT) Cayley-Klein metric learning
下载PDF
Low-light image enhancement based on Retinex theory and dual-tree complex wavelet transform 被引量:10
9
作者 YANG Mao-xiang TANG Gui-jin +3 位作者 LIU Xiao-hua WANG Li-qian CUI Zi-guan LUO Su-huai 《Optoelectronics Letters》 EI 2018年第6期470-475,共6页
In order to enhance the contrast of low-light images and reduce noise in them, we propose an image enhancement method based on Retinex theory and dual-tree complex wavelet transform(DT-CWT). The method first converts ... In order to enhance the contrast of low-light images and reduce noise in them, we propose an image enhancement method based on Retinex theory and dual-tree complex wavelet transform(DT-CWT). The method first converts an image from the RGB color space to the HSV color space and decomposes the V-channel by dual-tree complex wavelet transform. Next, an improved local adaptive tone mapping method is applied to process the low frequency components of the image, and a soft threshold denoising algorithm is used to denoise the high frequency components of the image. Then, the V-channel is rebuilt and the contrast is adjusted using white balance method. Finally, the processed image is converted back into the RGB color space as the enhanced result. Experimental results show that the proposed method can effectively improve the performance in terms of contrast enhancement, noise reduction and color reproduction. 展开更多
关键词 RETINEX theory dual-tree complex wavelet transform IMAGE ENHANCEMENT
原文传递
A Dual-Tree Complex Wavelet Transform-Based Model for Low-Illumination Image Enhancement 被引量:1
10
作者 GUAN Yurong Muhammad Aamir +4 位作者 Ziaur Rahman Zaheer Ahmed Dayo Waheed Ahmed Abro Muhammad Ishfaq HU Zhihua 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2021年第5期405-414,共10页
Image enhancement is a monumental task in the field of computer vision and image processing.Existing methods are insufficient for preserving naturalness and minimizing noise in images.This article discusses a techniqu... Image enhancement is a monumental task in the field of computer vision and image processing.Existing methods are insufficient for preserving naturalness and minimizing noise in images.This article discusses a technique that is based on wavelets for optimizing images taken in low-light.First,the V channel is created by mapping an image’s RGB channel to the HSV color space.Second,the acquired V channel is decomposed using the dual-tree complex wavelet transform(DT-CWT)in order to recover the concentrated information within its high and low-frequency subbands.Thirdly,an adaptive illumination boost technique is used to enhance the visibility of a low-frequency component.Simultaneously,anisotropic diffusion is used to mitigate the high-frequency component’s noise impact.To improve the results,the image is reconstructed using an inverse DT-CWT and then converted to RGB space using the newly calculated V.Additionally,images are white-balanced to remove color casts.Experiments demonstrate that the proposed approach significantly improves outcomes and outperforms previously reported methods in general. 展开更多
关键词 image enhancement dual-tree complex wavelet transform(dt-cwt) anisotropic diffusion low-light images
原文传递
基于DT-CWT的红外与可见光图像自适应融合 被引量:19
11
作者 杨晓慧 金海燕 焦李成 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2007年第6期419-424,共6页
针对低可见光图像和红外图像的特点,提出一种基于DT-CWT的自适应图像融合算法.该算法具有好的平移不变性和方向选择性,更适合于人类视觉.先对源图像作双树复小波变换,充分考虑各尺度分解层的系数特征,对低通子带引入免疫克隆选择,根据... 针对低可见光图像和红外图像的特点,提出一种基于DT-CWT的自适应图像融合算法.该算法具有好的平移不变性和方向选择性,更适合于人类视觉.先对源图像作双树复小波变换,充分考虑各尺度分解层的系数特征,对低通子带引入免疫克隆选择,根据统计评价准则定义亲和度函数,自适应获得最优融合权值;对高通子带则根据人类视觉特性定义局部方向对比度,并作为融合准则,突出和增强了各源图像的对比度与细节信息.实验结果表明:与基于小波的融合结果相比较,本文的融合算法自适应性和鲁棒性更强,较好地保护和显示了源图像中的边缘和细节信息,对比度和清晰度都有所提高. 展开更多
关键词 双树复小波变换 免疫克隆选择 局部方向对比度 红外图像 图像融合
下载PDF
基于DT-CWT和LS-SVM的苹果果梗/花萼和缺陷识别 被引量:17
12
作者 宋怡焕 饶秀勤 应义斌 《农业工程学报》 EI CAS CSCD 北大核心 2012年第9期114-118,共5页
该文提出了一种基于双树复小波变换(DT-CWT)和最小二乘支持向量机(LS-SVM)区分苹果的果梗/花萼和缺陷的方法。对苹果图像使用DT-CWT分解,使用变换后得到的高频子带系数的均值和方差构造特征向量,然后使用最小支持二乘向量机作为分类器... 该文提出了一种基于双树复小波变换(DT-CWT)和最小二乘支持向量机(LS-SVM)区分苹果的果梗/花萼和缺陷的方法。对苹果图像使用DT-CWT分解,使用变换后得到的高频子带系数的均值和方差构造特征向量,然后使用最小支持二乘向量机作为分类器进行分类。对180幅苹果图像进行了试验。讨论了DT-CWT分解层数以及目标图像大小对分类正确率的影响。试验结果显示,使用3层DT-CWT对大小为64×64子图像进行小波分解提取纹理特征,能达到最好的分类效果,分类正确率可以达到95.6%。 展开更多
关键词 机器视觉 最小二乘支持向量机(LS-SVM) 识别 特征提取 双树复小波变换(dt-cwt) 缺陷 果梗/花萼 苹果
下载PDF
SVM和DT-CWT的纹理图像分类方法研究 被引量:8
13
作者 解洪胜 张虹 徐秀 《中国矿业大学学报》 EI CAS CSCD 北大核心 2007年第6期773-778,共6页
提出了一种将支持向量机(SVM)和二元树复小波变换(DT-CWT)相结合的纹理图像分类方法.通过DT-CWT对纹理图像进行4层分解,提取各子频带小波系数模的均值和标准方差组成特征向量,利用SVM作为分类器实现纹理图像分类.从Brodatz图像库中随机... 提出了一种将支持向量机(SVM)和二元树复小波变换(DT-CWT)相结合的纹理图像分类方法.通过DT-CWT对纹理图像进行4层分解,提取各子频带小波系数模的均值和标准方差组成特征向量,利用SVM作为分类器实现纹理图像分类.从Brodatz图像库中随机选取了30幅纹理图像进行了分类试验,结果表明:该方法具有较高的分类精度,尤其在有限训练样本的情况下分类正确率明显优于其它的分类算法,体现了该方法的有效性和良好的泛化能力. 展开更多
关键词 二元树复小波变换 小波变换 支持向量机 特征提取 纹理分类
下载PDF
一种DT-CWT域内的图像零水印算法 被引量:7
14
作者 李段 徐刚 《中国图象图形学报》 CSCD 北大核心 2006年第5期725-729,共5页
为了实现数字图像的版权保护,基于双树复小波变换,提出了一种新的零水印算法。该算法由于不改变图像的任何信息,因此在兼具不可见性和鲁棒性的同时,还可以解决常规的冗余变换域水印算法的能量损失问题。该算法先借用实小波变换的零树结... 为了实现数字图像的版权保护,基于双树复小波变换,提出了一种新的零水印算法。该算法由于不改变图像的任何信息,因此在兼具不可见性和鲁棒性的同时,还可以解决常规的冗余变换域水印算法的能量损失问题。该算法先借用实小波变换的零树结构思想,在变换后图像中选择重要的系数树,并利用主分量分析提取它们的第一主分量,然后经过量化编码构造零水印信息,再到认证中心注册后,即可作为用户的版权标志。实验结果表明,该算法不仅具有很好的鲁棒性,而且可以抵抗滤波、加噪、有损压缩等各种攻击。 展开更多
关键词 双树复小波变换 小波零树 主分量分析 零水印
下载PDF
基于Log-Polar和DT-CWT的旋转不变纹理分类算法 被引量:4
15
作者 尚燕 练秋生 《计算机工程与应用》 CSCD 北大核心 2007年第11期48-50,共3页
提出了一种基于对数-极坐标变换(Log-Polar)和双树复数小波变换(DT-CWT)的旋转不变纹理分类算法。该方法首先对纹理图像进行对数-极坐标变换将旋转转化为平移,再用具有平移不变性的双树复数小波对变换后的图像滤波并计算各子带的能量值... 提出了一种基于对数-极坐标变换(Log-Polar)和双树复数小波变换(DT-CWT)的旋转不变纹理分类算法。该方法首先对纹理图像进行对数-极坐标变换将旋转转化为平移,再用具有平移不变性的双树复数小波对变换后的图像滤波并计算各子带的能量值组成旋转不变特征向量,最后利用支持向量机算法实现纹理图像的分类。将该方法与其它旋转不变纹理分类算法进行比较,实验结果表明,提出的算法能有效地提高正确分类率。 展开更多
关键词 旋转不变 纹理分类 对数-极坐标变换(Log—Polar) 双树复数 小波变换(DT—CWT) 支持向量机(SVM)
下载PDF
基于Q-Shift DT-CWT的多聚焦图像融合研究 被引量:7
16
作者 徐月美 张虹 张凤云 《微电子学与计算机》 CSCD 北大核心 2011年第9期206-209,共4页
提出了一种基于Q-Shift双树复小波变换的多聚焦图像融合算法.根据多聚焦图像的成像特点和变换后的高低频系数相关性,对高频系数采用"模值绝对值和取大"和对低频系数采用"局部区域标准方差取大"的融合准则,并对高频... 提出了一种基于Q-Shift双树复小波变换的多聚焦图像融合算法.根据多聚焦图像的成像特点和变换后的高低频系数相关性,对高频系数采用"模值绝对值和取大"和对低频系数采用"局部区域标准方差取大"的融合准则,并对高频融合系数进行一致性检测,以实现尽可能直接选择源图像中的清晰区域系数作为融合图像对应位置的系数.实验结果表明,该融合方法获得了很好的融合效果,与小波变换相比,充分显示了近似的平移不变性和良好方向选择性等特性. 展开更多
关键词 Q-Shift双树复小波变换 多聚焦图像融合 模值绝对值和 局部区域标准方差
下载PDF
在频谱直方图中应用DT-CWT的人脸检测技术 被引量:1
17
作者 孙粤辉 杜明辉 《计算机工程与应用》 CSCD 北大核心 2007年第20期86-89,共4页
提出了一种利用双树-复小波变换(DT-CWT)构成频谱直方图并通过支持向量机(SVM)进行人脸检测的方法。在人脸图像的表示中,基于DT-CWT在不同尺度上具有的很好方向选择性,对原始图像滤波,并与其它滤波器卷积滤波后得到原始图像的不同频率... 提出了一种利用双树-复小波变换(DT-CWT)构成频谱直方图并通过支持向量机(SVM)进行人脸检测的方法。在人脸图像的表示中,基于DT-CWT在不同尺度上具有的很好方向选择性,对原始图像滤波,并与其它滤波器卷积滤波后得到原始图像的不同频率特征一起构成频谱直方图,该直方图在图像的表示上具有很好的本质扩展性。通过支持向量机(SVM)对频谱直放图向量进行分类训练,得到了有效区分人脸与非人脸的分类函数。实验显示,DT-CWT具有与Gabor变换类似的性质,而且计算冗余度更小,计算速度更快。应用DT-CWT频谱直方图的人脸检测算法取得了令人满意的结果。 展开更多
关键词 双树-复小波变换(DT—CWT) 频谱直方图 支持向量机(SVM) 人脸检测
下载PDF
基于DT-CWT统计模型的舰船噪声信号中线谱信号检测研究 被引量:3
18
作者 侯铁双 相敬林 韩鹏 《西北工业大学学报》 EI CAS CSCD 北大核心 2009年第6期801-805,共5页
双树复解析小波变换(DT-CWT)在信号去噪方面的性能优于实小波变换,且计算量远小于后者。文章基于DT-CWT小波理论,通过对海洋环境噪声中舰船噪声中低频线谱信号小波系数的层间联合分布的分析,提出一种DT-CWT统计模型并推导出最大后验概... 双树复解析小波变换(DT-CWT)在信号去噪方面的性能优于实小波变换,且计算量远小于后者。文章基于DT-CWT小波理论,通过对海洋环境噪声中舰船噪声中低频线谱信号小波系数的层间联合分布的分析,提出一种DT-CWT统计模型并推导出最大后验概率估计子(MAP),用于检测海洋噪声背景中的舰船噪声中的低频线谱信号。对实测舰船噪声信号和海洋环境噪声的分析表明,所提出的DT-CWT统计模型算法明显优于VisuShrink、SureShrink和BayesShrink算法对舰船噪声中线谱信号的检测效果。 展开更多
关键词 信号检测 算法 dt-cwt统计模型 线谱 舰船辐射噪声
下载PDF
Underwater Gas Leakage Flow Detection and Classification Based on Multibeam Forward-Looking Sonar
19
作者 Yuanju Cao Chao Xu +3 位作者 Jianghui Li Tian Zhou Longyue Lin Baowei Chen 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期674-687,共14页
The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring ... The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring technology. Remotely operated vehicles(ROVs) and autonomous underwater vehicles(AUVs) are equipped with high-resolution imaging sonar systems that have broad application potential in underwater gas and target detection tasks. However, some bubble clusters are relatively weak scatterers, so detecting and distinguishing them against the seabed reverberation in forward-looking sonar images are challenging. This study uses the dual-tree complex wavelet transform to extract the image features of multibeam forward-looking sonar. Underwater gas leakages with different flows are classified by combining deep learning theory. A pool experiment is designed to simulate gas leakage, where sonar images are obtained for further processing. Results demonstrate that this method can detect and classify underwater gas leakage streams with high classification accuracy. This performance indicates that the method can detect gas leakage from multibeam forward-looking sonar images and has the potential to predict gas leakage flow. 展开更多
关键词 Carbon capture utilization and storage(CCUS) Gas leakage Forward-looking sonar dual-tree complex wavelet transform(dt-cwt) Deep learning
下载PDF
硬C-means聚类和DT-CWT变换的数字图像水印算法
20
作者 林克正 姚欢 《计算机工程与应用》 CSCD 2013年第18期167-170,共4页
为了提高数字水印图像的鲁棒性,提出一种基于硬C均值聚类和双树复小波变换域的图像水印算法。该算法对载体图像进行一层双树复小波变换分解,利用人类视觉特性对其2个低频子带进行硬C均值聚类划分,确定可嵌入信息区域。将二值水印图像信... 为了提高数字水印图像的鲁棒性,提出一种基于硬C均值聚类和双树复小波变换域的图像水印算法。该算法对载体图像进行一层双树复小波变换分解,利用人类视觉特性对其2个低频子带进行硬C均值聚类划分,确定可嵌入信息区域。将二值水印图像信号经过Hilbert曲线置乱和降维,形成一维信号序列。利用图像自身局部相关性,调节水印嵌入强度并修改小波系数值,实现将水印嵌入到可嵌入信息区域。实验表明,该算法具有良好的透明性且对压缩、剪切、噪声和滤波等几何攻击具有高鲁棒性。 展开更多
关键词 数字水印 双树复小波变换 C均值聚类 Hilbert曲线置乱
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部