The urgent need to develop customized functional products only possible by 3D printing had realized when faced with the unavailability of medical devices like surgical instruments during the coronavirus-19 disease and...The urgent need to develop customized functional products only possible by 3D printing had realized when faced with the unavailability of medical devices like surgical instruments during the coronavirus-19 disease and the ondemand necessity to perform surgery during space missions.Biopolymers have recently been the most appropriate option for fabricating surgical instruments via 3D printing in terms of cheaper and faster processing.Among all 3D printing techniques,fused deposition modelling(FDM)is a low-cost and more rapid printing technique.This article proposes the fabrication of surgical instruments,namely,forceps and hemostat using the fused deposition modeling(FDM)process.Excellent mechanical properties are the only indicator to judge the quality of the functional parts.The mechanical properties of FDM-processed parts depend on various process parameters.These parameters are layer height,infill pattern,top/bottom pattern,number of top/bottom layers,infill density,flow,number of shells,printing temperature,build plate temperature,printing speed,and fan speed.Tensile strength and modulus of elasticity are chosen as evaluation indexes to ascertain the mechanical properties of polylactic acid(PLA)parts printed by FDM.The experiments have performed through Taguchi’s L27orthogonal array(OA).Variance analysis(ANOVA)ascertains the significance of the process parameters and their percent contributions to the evaluation indexes.Finally,as a multiobjective optimization technique,grey relational analysis(GRA)obtains an optimal set of FDM process parameters to fabricate the best parts with comprehensive mechanical properties.Scanning electron microscopy(SEM)examines the types of defects and strong bonding between rasters.The proposed research ensures the successful fabrication of functional surgical tools with substantial ultimate tensile strength(42.6 MPa)and modulus of elasticity(3274 MPa).展开更多
Fused deposition modelling(FDM), a widely used rapid prototyping process, is a promising technique in manufacturing engineering. In this work, a method for characterizing elastic constants of FDM-fabricated materials ...Fused deposition modelling(FDM), a widely used rapid prototyping process, is a promising technique in manufacturing engineering. In this work, a method for characterizing elastic constants of FDM-fabricated materials is proposed. First of all, according to the manufacturing process of FDM, orthotropic constitutive model is used to describe the mechanical behavior. Then the virtual fields method(VFM) is applied to characterize all the mechanical parameters(Q, Q, Q, Q) using the full-field strain,which is measured by digital image correlation(DIC). Since the principal axis of the FDM-fabricated structure is sometimes unknown due to the complexity of the manufacturing process, a disk in diametrical compression is used as the load configuration so that the loading angle can be changed conveniently. To verify the feasibility of the proposed method, finite element method(FEM) simulation is conducted to obtain the strain field of the disk. The simulation results show that higher accuracy can be achieved when the loading angle is close to 30?. Finally, a disk fabricated by FDM was used for the experiment. By rotating the disk, several tests with different loading angles were conducted. To determine the position of the principal axis in each test, two groups of parameters(Q, Q, Q, Q) are calculated by two different groups of virtual fields. Then the corresponding loading angle can be determined by minimizing the deviation between two groups of the parameters. After that, the four constants(Q, Q, Q, Q) were determined from the test with an angle of 27?.展开更多
In a poloidal field (PF) converter module, fuse protection is of great importance to ensure the safety of the thyristors. The fuse is pre-selected in a traditional way and then verified by finite element analysis. A...In a poloidal field (PF) converter module, fuse protection is of great importance to ensure the safety of the thyristors. The fuse is pre-selected in a traditional way and then verified by finite element analysis. A 3D physical model is built by ANSYS software to solve the thermal- electric coupled problem of transient process in case of external fault. The result shows that this method is feasible.展开更多
In this paper,we report the deductive formula used for the method of dual-wavelength corresponding solutions under condition of having ligand interference and the stability constants of three new coordination compound...In this paper,we report the deductive formula used for the method of dual-wavelength corresponding solutions under condition of having ligand interference and the stability constants of three new coordination compounds [AuL_2]^+determined with this method.The stability of the three compounds,the necessity of controlling pH in experimental systems and the advantage of this method are discussed in detail.展开更多
The damage to the rear surface of fused silica under the action of high power laser is more severe than that incurred by the front surface,which hinders the improvement in the energy of the high power laser device.For...The damage to the rear surface of fused silica under the action of high power laser is more severe than that incurred by the front surface,which hinders the improvement in the energy of the high power laser device.For optical components,the ionization breakdown by laser is a main factor causing damage,particularly with laser plasma shock waves,which can cause large-scale fracture damage in fused silica.In this study,the damage morphology is experimentally investigated,and the characteristics of the damage point are obtained.In the theoretical study,the coupling and transmission of the shock wave in glass are investigated based on the finite element method.Thus,both the magnitude and the orientation of stress are obtained.The damage mechanism of the glass can be explained based on the fracture characteristics of glass under different stresses and also on the variation of the damage zone’s Raman spectrum.In addition,the influence of the glass thickness on the damage morphology is investigated.The results obtained in this study can be used as a reference in understanding the characteristics and mechanism of damage characteristics induced by laser plasma shock waves.展开更多
CO2 laser rapid ablation mitigation(RAM)of fused silica has been used in high-power laser systems owing to its advantages of high efficiency,and ease of implementing batch and automated repairing.In order to study the...CO2 laser rapid ablation mitigation(RAM)of fused silica has been used in high-power laser systems owing to its advantages of high efficiency,and ease of implementing batch and automated repairing.In order to study the effect of repaired morphology of RAM on laser modulation and to improve laser damage threshold of optics,an finite element method(FEM)mathematical model of 351 nm laser irradiating fused silica optics is developed based on Maxwell electromagnetic field equations,to explore the 3D near-field light intensity distribution inside optics with repaired site on its surface.The influences of the cone angle and the size of the repaired site on incident laser modulation are studied as well.The results have shown that for the repaired site with a cone angle of 73.3°,the light intensity distribution has obvious three-dimensional characteristics.The relative light intensity on z-section has a circularly distribution,and the radius of the annular intensification zone increases with the decrease of z.While the distribution of maximum relative light intensity on y-section is parabolical with the increase of y.As the cone angle of the repaired site decreases,the effect of the repaired surface on light modulation becomes stronger,leading to a weak resistance to laser damage.Moreover,the large size repaired site would also reduce the laser damage threshold.Therefore,a repaired site with a larger cone angle and smaller size is preferred in practical CO2 laser repairing of surface damage.This work will provide theoretical guidance for the design of repaired surface topography,as well as the improvement of RAM process.展开更多
A Convenient method for the synthesis of fused phosphorusheterocycle 1,3,2-oxazaphosphorin-[3.2-a]-8-oxo-10-thio(or seleno)-[1,3,2]-benzodiazaphosphorines was carried out in one pot by the reaction of Tris(diethylamin...A Convenient method for the synthesis of fused phosphorusheterocycle 1,3,2-oxazaphosphorin-[3.2-a]-8-oxo-10-thio(or seleno)-[1,3,2]-benzodiazaphosphorines was carried out in one pot by the reaction of Tris(diethylamino)phosphine with multifunctional compounds 2-(N-(beta or gamma-hydroxyl) alkylene) amino-benzamides 1. When PCL3 was used, only chlorinated product was obtained.展开更多
In order to fabricate porous ceramics with good properties and proper production cost,SiC-Al2 O3 porous ceramics were prepared at 1 450 ℃ for 2 h from the powders of commercial silicon carbide and white fused corundu...In order to fabricate porous ceramics with good properties and proper production cost,SiC-Al2 O3 porous ceramics were prepared at 1 450 ℃ for 2 h from the powders of commercial silicon carbide and white fused corundum via a polymeric replication method. Effects of the mass ratio of SiC powder to white fused corundum powder( 1 ∶ 3,1 ∶ 1 and 3 ∶ 1) on the appearance,phase composition,sintering properties and thermal shock resistance were investigated. The research results indicate that the as-prepared Si C-Al2 O3 porous ceramics have uniform pores,and their linear shrinkage ratio,apparent porosity and bulk density reach 4. 70%,67. 17%and 0. 83 g·cm-3,respectively. The thermal shock cycles from 1 400 ℃ to room temperature reach 23 including 15 cycles in air cooling condition and then 8 cycles in water cooling condition. Their main phases areα-Al2 O3 and Al6 Si2 O13 as well as a small amount of SiC and free SiO2. The as-prepared porous ceramic with the ratio of m( SiC) ∶ m( Al2 O3) = 1∶ 1 possesses prior comprehensive properties.展开更多
Six kinds of Cr2O3 - Al2 O3 fused grains (the mass percent of Cr203 was 15%, 40%, 50%, 60%, 85% and 99%, respectively ) were prepared using chrome green and Al203 powder as starting materials by electro-fnsion, n...Six kinds of Cr2O3 - Al2 O3 fused grains (the mass percent of Cr203 was 15%, 40%, 50%, 60%, 85% and 99%, respectively ) were prepared using chrome green and Al203 powder as starting materials by electro-fnsion, named as CR15, CR40, CR50, CR60, CR85, and CR99, respectively. The corrosion resistance of the six kinds of Cr2O3- Al2O3.fused grains (4-1 ram) was studied using rotary slag corrosion method. The results show that: ( 1 ) the corrosion resistance of the fused grains increases with the Cr203 content and the grain size increasing; (2)the grains of CR99 and CR85 with higher Cr2O3 content are corroded at the slag surJace layer, because FeO and Al2O3. in the slag corrode the grains ; FeO reacts with Cr2O3 in the aggregates.forming (Fe, Cr )3O4 ,spinel firstly, and the spinel reacts with other phases forming composite spinel; when FeO is fidly consumed, Al2 O3 penetrated into the grains reacts with Cr2O3 Jorming Al2O3 - Cr2O3 solid solution on the grains surface; (3) for CR60, the corrosion exists both in the slag surface layer and in the penetration layer; in the penetration layer, CaO and SiO2 react with Al2O3 in Al2O3 - Cr2O3 solid solution forming anorthite , gehlenite ,and glass phase; the grains of CR50, CR40 and CRI5 have the same corrosion mechanism with CR60 in the penetration layer.展开更多
As part of the method development, the injection volume as a critical quality attribute in fast fused-core chromatography was evaluated. Spilanthol, a pharmaceutically interesting N- alkylamide currently under investi...As part of the method development, the injection volume as a critical quality attribute in fast fused-core chromatography was evaluated. Spilanthol, a pharmaceutically interesting N- alkylamide currently under investigation in our laboratory, was chosen as the model compound. Spilanthol was dissolved in both PBS and MeOH/H20 (70/30, v/v) and subsequently analyzed using a fused-core system hereby selecting five chromatographic characteristics (retention time, area, height, theoretical plates and symmetry factor) as responses. We demonstrated that the injection volume significantly influenced both the qualitative and quantitative performance of fused-core chromatography, a phenomenon which is confounded with the nature of the used sample solvent. From 2 ~tL up to 100 laL injection volume with PBS as solvent, the symmetry factor decreased favorably by 20%. Moreover, the theoretical plates and the quantitative parameters (area and height) increased up to 30%. On the contrary, in this injection volume range, the theoretical plates for the methanol-based samples decreased by more than 60%, while the symmetry factor increased and the height decreased, both by 30%. The injection volume is thus a critical and often overlooked parameter in fused-core method description and validation.展开更多
文摘The urgent need to develop customized functional products only possible by 3D printing had realized when faced with the unavailability of medical devices like surgical instruments during the coronavirus-19 disease and the ondemand necessity to perform surgery during space missions.Biopolymers have recently been the most appropriate option for fabricating surgical instruments via 3D printing in terms of cheaper and faster processing.Among all 3D printing techniques,fused deposition modelling(FDM)is a low-cost and more rapid printing technique.This article proposes the fabrication of surgical instruments,namely,forceps and hemostat using the fused deposition modeling(FDM)process.Excellent mechanical properties are the only indicator to judge the quality of the functional parts.The mechanical properties of FDM-processed parts depend on various process parameters.These parameters are layer height,infill pattern,top/bottom pattern,number of top/bottom layers,infill density,flow,number of shells,printing temperature,build plate temperature,printing speed,and fan speed.Tensile strength and modulus of elasticity are chosen as evaluation indexes to ascertain the mechanical properties of polylactic acid(PLA)parts printed by FDM.The experiments have performed through Taguchi’s L27orthogonal array(OA).Variance analysis(ANOVA)ascertains the significance of the process parameters and their percent contributions to the evaluation indexes.Finally,as a multiobjective optimization technique,grey relational analysis(GRA)obtains an optimal set of FDM process parameters to fabricate the best parts with comprehensive mechanical properties.Scanning electron microscopy(SEM)examines the types of defects and strong bonding between rasters.The proposed research ensures the successful fabrication of functional surgical tools with substantial ultimate tensile strength(42.6 MPa)and modulus of elasticity(3274 MPa).
基金the financial support from the National Natural Science Foundation of China (Grants 11672153, 11232008, and 11227801)
文摘Fused deposition modelling(FDM), a widely used rapid prototyping process, is a promising technique in manufacturing engineering. In this work, a method for characterizing elastic constants of FDM-fabricated materials is proposed. First of all, according to the manufacturing process of FDM, orthotropic constitutive model is used to describe the mechanical behavior. Then the virtual fields method(VFM) is applied to characterize all the mechanical parameters(Q, Q, Q, Q) using the full-field strain,which is measured by digital image correlation(DIC). Since the principal axis of the FDM-fabricated structure is sometimes unknown due to the complexity of the manufacturing process, a disk in diametrical compression is used as the load configuration so that the loading angle can be changed conveniently. To verify the feasibility of the proposed method, finite element method(FEM) simulation is conducted to obtain the strain field of the disk. The simulation results show that higher accuracy can be achieved when the loading angle is close to 30?. Finally, a disk fabricated by FDM was used for the experiment. By rotating the disk, several tests with different loading angles were conducted. To determine the position of the principal axis in each test, two groups of parameters(Q, Q, Q, Q) are calculated by two different groups of virtual fields. Then the corresponding loading angle can be determined by minimizing the deviation between two groups of the parameters. After that, the four constants(Q, Q, Q, Q) were determined from the test with an angle of 27?.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2010GB108001 and 2013GB113003)
文摘In a poloidal field (PF) converter module, fuse protection is of great importance to ensure the safety of the thyristors. The fuse is pre-selected in a traditional way and then verified by finite element analysis. A 3D physical model is built by ANSYS software to solve the thermal- electric coupled problem of transient process in case of external fault. The result shows that this method is feasible.
文摘In this paper,we report the deductive formula used for the method of dual-wavelength corresponding solutions under condition of having ligand interference and the stability constants of three new coordination compounds [AuL_2]^+determined with this method.The stability of the three compounds,the necessity of controlling pH in experimental systems and the advantage of this method are discussed in detail.
基金Project supported by the Key Research and Development Projects of Science and Technology Department of Sichuan Province,China(Grant No.2018FZ0032)the National Natural Science Foundation of China(Grant No.U1730141)
文摘The damage to the rear surface of fused silica under the action of high power laser is more severe than that incurred by the front surface,which hinders the improvement in the energy of the high power laser device.For optical components,the ionization breakdown by laser is a main factor causing damage,particularly with laser plasma shock waves,which can cause large-scale fracture damage in fused silica.In this study,the damage morphology is experimentally investigated,and the characteristics of the damage point are obtained.In the theoretical study,the coupling and transmission of the shock wave in glass are investigated based on the finite element method.Thus,both the magnitude and the orientation of stress are obtained.The damage mechanism of the glass can be explained based on the fracture characteristics of glass under different stresses and also on the variation of the damage zone’s Raman spectrum.In addition,the influence of the glass thickness on the damage morphology is investigated.The results obtained in this study can be used as a reference in understanding the characteristics and mechanism of damage characteristics induced by laser plasma shock waves.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51775147 and 51705105)the Science Challenge Project of China(Grant No.TZ2016006-0503-01)+2 种基金the Young Elite Scientists Sponsorship Program by CAST(Grant No.2018QNRC001)the China Postdoctoral Science Foundation funded project(Grant Nos.2018T110288 and 2017M621260)the Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(Grant Nos.SKLRS201718A and SKLRS201803B).
文摘CO2 laser rapid ablation mitigation(RAM)of fused silica has been used in high-power laser systems owing to its advantages of high efficiency,and ease of implementing batch and automated repairing.In order to study the effect of repaired morphology of RAM on laser modulation and to improve laser damage threshold of optics,an finite element method(FEM)mathematical model of 351 nm laser irradiating fused silica optics is developed based on Maxwell electromagnetic field equations,to explore the 3D near-field light intensity distribution inside optics with repaired site on its surface.The influences of the cone angle and the size of the repaired site on incident laser modulation are studied as well.The results have shown that for the repaired site with a cone angle of 73.3°,the light intensity distribution has obvious three-dimensional characteristics.The relative light intensity on z-section has a circularly distribution,and the radius of the annular intensification zone increases with the decrease of z.While the distribution of maximum relative light intensity on y-section is parabolical with the increase of y.As the cone angle of the repaired site decreases,the effect of the repaired surface on light modulation becomes stronger,leading to a weak resistance to laser damage.Moreover,the large size repaired site would also reduce the laser damage threshold.Therefore,a repaired site with a larger cone angle and smaller size is preferred in practical CO2 laser repairing of surface damage.This work will provide theoretical guidance for the design of repaired surface topography,as well as the improvement of RAM process.
文摘A Convenient method for the synthesis of fused phosphorusheterocycle 1,3,2-oxazaphosphorin-[3.2-a]-8-oxo-10-thio(or seleno)-[1,3,2]-benzodiazaphosphorines was carried out in one pot by the reaction of Tris(diethylamino)phosphine with multifunctional compounds 2-(N-(beta or gamma-hydroxyl) alkylene) amino-benzamides 1. When PCL3 was used, only chlorinated product was obtained.
文摘In order to fabricate porous ceramics with good properties and proper production cost,SiC-Al2 O3 porous ceramics were prepared at 1 450 ℃ for 2 h from the powders of commercial silicon carbide and white fused corundum via a polymeric replication method. Effects of the mass ratio of SiC powder to white fused corundum powder( 1 ∶ 3,1 ∶ 1 and 3 ∶ 1) on the appearance,phase composition,sintering properties and thermal shock resistance were investigated. The research results indicate that the as-prepared Si C-Al2 O3 porous ceramics have uniform pores,and their linear shrinkage ratio,apparent porosity and bulk density reach 4. 70%,67. 17%and 0. 83 g·cm-3,respectively. The thermal shock cycles from 1 400 ℃ to room temperature reach 23 including 15 cycles in air cooling condition and then 8 cycles in water cooling condition. Their main phases areα-Al2 O3 and Al6 Si2 O13 as well as a small amount of SiC and free SiO2. The as-prepared porous ceramic with the ratio of m( SiC) ∶ m( Al2 O3) = 1∶ 1 possesses prior comprehensive properties.
文摘Six kinds of Cr2O3 - Al2 O3 fused grains (the mass percent of Cr203 was 15%, 40%, 50%, 60%, 85% and 99%, respectively ) were prepared using chrome green and Al203 powder as starting materials by electro-fnsion, named as CR15, CR40, CR50, CR60, CR85, and CR99, respectively. The corrosion resistance of the six kinds of Cr2O3- Al2O3.fused grains (4-1 ram) was studied using rotary slag corrosion method. The results show that: ( 1 ) the corrosion resistance of the fused grains increases with the Cr203 content and the grain size increasing; (2)the grains of CR99 and CR85 with higher Cr2O3 content are corroded at the slag surJace layer, because FeO and Al2O3. in the slag corrode the grains ; FeO reacts with Cr2O3 in the aggregates.forming (Fe, Cr )3O4 ,spinel firstly, and the spinel reacts with other phases forming composite spinel; when FeO is fidly consumed, Al2 O3 penetrated into the grains reacts with Cr2O3 Jorming Al2O3 - Cr2O3 solid solution on the grains surface; (3) for CR60, the corrosion exists both in the slag surface layer and in the penetration layer; in the penetration layer, CaO and SiO2 react with Al2O3 in Al2O3 - Cr2O3 solid solution forming anorthite , gehlenite ,and glass phase; the grains of CR50, CR40 and CRI5 have the same corrosion mechanism with CR60 in the penetration layer.
基金funded by the "Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen)’’ to Jente Boonen(No.091257) and to Matthias D’Hondt(No.101529)
文摘As part of the method development, the injection volume as a critical quality attribute in fast fused-core chromatography was evaluated. Spilanthol, a pharmaceutically interesting N- alkylamide currently under investigation in our laboratory, was chosen as the model compound. Spilanthol was dissolved in both PBS and MeOH/H20 (70/30, v/v) and subsequently analyzed using a fused-core system hereby selecting five chromatographic characteristics (retention time, area, height, theoretical plates and symmetry factor) as responses. We demonstrated that the injection volume significantly influenced both the qualitative and quantitative performance of fused-core chromatography, a phenomenon which is confounded with the nature of the used sample solvent. From 2 ~tL up to 100 laL injection volume with PBS as solvent, the symmetry factor decreased favorably by 20%. Moreover, the theoretical plates and the quantitative parameters (area and height) increased up to 30%. On the contrary, in this injection volume range, the theoretical plates for the methanol-based samples decreased by more than 60%, while the symmetry factor increased and the height decreased, both by 30%. The injection volume is thus a critical and often overlooked parameter in fused-core method description and validation.