The self imaging effect in graded index waveguides using annealed proton exchange (APE) technique in lithium niobate (LiNbO 3) waveguides is analyzed and simulated using the three dimensional nonparaxial beam pro...The self imaging effect in graded index waveguides using annealed proton exchange (APE) technique in lithium niobate (LiNbO 3) waveguides is analyzed and simulated using the three dimensional nonparaxial beam propagation method (BPM).On this basis,a 1×8 multimode interference (MMI) optical power splitter by APE technique in X cut LiNibO 3 with Y propagation substrate is fabricated.Measurements show that the device has realized eight powers splittings.展开更多
A very compact (80 - 100 μm2) integrated power splitting devices with two outputs (1 × 2), four outputs (1 × 4) and six outputs (1 × 6) channel has been designed, simulated and optimized for Telecommun...A very compact (80 - 100 μm2) integrated power splitting devices with two outputs (1 × 2), four outputs (1 × 4) and six outputs (1 × 6) channel has been designed, simulated and optimized for Telecommunication purpose with T-Junction, Y-Junction, PC line defect waveguides integrated with multimode interference block (PCLD-MMI) and multiple line defect PC waveguides (MLDPCW) configurations. The optical modeling of these proposed structures was investigated by finite difference time domain (FDTD) simulation. With the optimization of the parameters (Hole Radius, R = 0.128 μm, Input Diameter, D = 1.02 μm, Input wavelength, λ = 1.55 μm, Substrate Reflective Index, nsub = Si(1.52), Photonic Crystal Material, npcs = InAs(3.45), and Rectangular crystal structure), 1 × 2 for Y-Junction (100%), 1 × 4 for T-Junction (92.8%) and 1 × 6 configuration for MLDPCW (81%) show maximum power transmission.展开更多
A novel variable C-band radio-frequency (RF) power splitter was designed at Shanghai Institute of Applied Physics, Chinese Academy of Sciences. Using three RF impedance combiners, an H-bend, and an RF polarizer, this ...A novel variable C-band radio-frequency (RF) power splitter was designed at Shanghai Institute of Applied Physics, Chinese Academy of Sciences. Using three RF impedance combiners, an H-bend, and an RF polarizer, this new power splitter is much more compact than a traditionally designed splitter, which comprises three 3-dB hybrids. The parameters were optimized to achieve good matching and minimize reflection. Here, the RF design of the new C-band variable power splitter is presented.展开更多
An initial structure design of MMI 1×8 optical power splitters is reported.The waveguide material is Si-based SiO2 Ge-doped and deposited by PECVD method.Embedded strip structure is implied in the section design....An initial structure design of MMI 1×8 optical power splitters is reported.The waveguide material is Si-based SiO2 Ge-doped and deposited by PECVD method.Embedded strip structure is implied in the section design.By using BPM-CAD,a favorable result is obtained that this device has a sound uniformity and fairly low loss.Meanwhile,simulations of designs with certain changed parameters is also implemented for a better design configuration.展开更多
A 1×8 GaAs/GaAlAs optical power splitter based on a MultiMode Interference (MMI) coupler is presented. The input and output single mode waveguides are optimized by the Discrete Spectral Index Method (DSIM) and a ...A 1×8 GaAs/GaAlAs optical power splitter based on a MultiMode Interference (MMI) coupler is presented. The input and output single mode waveguides are optimized by the Discrete Spectral Index Method (DSIM) and a moderate square spot on the output in deep etched rib waveguides is obtained. The fabrication tolerance has been analyzed by the Finite Difference Beam Propagation Method (FDBPM). The device was fabricated by the dry etching technique and the near field output obtained. The device shows polarization insensitive, large fabrication tolerance, low theoretical excess loss and low power imbalance.展开更多
A 1×8 multimode interference power splitter with multimode input/output waveguides in SOI material is designed by the beam propagation method and fabricated by the inductive coupled plasma etching technology for...A 1×8 multimode interference power splitter with multimode input/output waveguides in SOI material is designed by the beam propagation method and fabricated by the inductive coupled plasma etching technology for use in fiber optics communication systems.The fabricated device exhibits low loss and good coupling uniformity.The excess loss is lower than 0 8dB,and the uniformity is 0 45dB at the wavelength of 1550nm.Moreover,the polarization dependent loss is lower than 0 7dB at 1550nm.The device size is only 2mm×10mm.展开更多
随着信息技术的发展,市场对于更小型化、更高效光器件的需求不断增加.采用互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)工艺,成功制备了Si_(3)N_(4)光功率分束器并对其进行测试.结果表明,在1550 nm波长下,边缘...随着信息技术的发展,市场对于更小型化、更高效光器件的需求不断增加.采用互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)工艺,成功制备了Si_(3)N_(4)光功率分束器并对其进行测试.结果表明,在1550 nm波长下,边缘优化的1×8功率分束器的总损耗仅为1.30 dB,且其体积相较于传统设计可减小30%.本研究应用逆向优化算法,突破了传统设计仅能针对规则图形设计的限制,为实现小尺寸、低损耗的光功率分束器提供了一种可行途径.展开更多
A polarization-insensitive mode-order converting power splitter using a pixelated region is presented and investigated in this paper.As TE_(0)and TM_(0)modes are injected into the input port,they are converted into TE...A polarization-insensitive mode-order converting power splitter using a pixelated region is presented and investigated in this paper.As TE_(0)and TM_(0)modes are injected into the input port,they are converted into TE_(1)and TM_(1)modes,which evenly come out from the two output ports.The finite-difference time-domain method and direct-binary-search optimization algorithm are utilized to optimize structural parameters of the pixelated region to attain small insertion loss,low crosstalk,wide bandwidth,excellent power uniformity,polarization-insensitive property,and compact size.Experimental results reveal that the insertion loss,crosstalk,and power uniformity of the fabricated device at 1550 nm are 0.57,-19.67,and 0.094 d B in the case of TE polarization,while in the TM polarization,the relevant insertion loss,crosstalk,and power uniformity are 0.57,-19.40,and 0.11 d B.Within a wavelength range from 1520 to 1600 nm,for the fabricated device working at TE polarization,the insertion loss,crosstalk,and power uniformity are lower than 1.39,-17.64,and 0.14 dB.In the case of TM polarization,we achieved an insertion loss,crosstalk,and power uniformity less than 1.23,-17.62,and 0.14 dB.展开更多
Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or...Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or photomask.In this paper,we demonstrate the design and fabrication of a planar lightwave circuit(PLC)power splitter encoded with waveguide Bragg gratings(WBG)using a femtosecond laser inscription technique for passive optical network(PON)fault localization application.Both the reflected wavelengths and intervals of WBGs can be conveniently tuned.In the experiment,we succeeded in directly inscribing WBGs in 1×4 PLC splitter chips with a wavelength interval of about 4 nm and an adjustable reflectivity of up to 70% in the C-band.The proposed method is suitable for the prototyping of a PLC splitter encoded with WBG for PON fault localization applications.展开更多
文摘The self imaging effect in graded index waveguides using annealed proton exchange (APE) technique in lithium niobate (LiNbO 3) waveguides is analyzed and simulated using the three dimensional nonparaxial beam propagation method (BPM).On this basis,a 1×8 multimode interference (MMI) optical power splitter by APE technique in X cut LiNibO 3 with Y propagation substrate is fabricated.Measurements show that the device has realized eight powers splittings.
文摘A very compact (80 - 100 μm2) integrated power splitting devices with two outputs (1 × 2), four outputs (1 × 4) and six outputs (1 × 6) channel has been designed, simulated and optimized for Telecommunication purpose with T-Junction, Y-Junction, PC line defect waveguides integrated with multimode interference block (PCLD-MMI) and multiple line defect PC waveguides (MLDPCW) configurations. The optical modeling of these proposed structures was investigated by finite difference time domain (FDTD) simulation. With the optimization of the parameters (Hole Radius, R = 0.128 μm, Input Diameter, D = 1.02 μm, Input wavelength, λ = 1.55 μm, Substrate Reflective Index, nsub = Si(1.52), Photonic Crystal Material, npcs = InAs(3.45), and Rectangular crystal structure), 1 × 2 for Y-Junction (100%), 1 × 4 for T-Junction (92.8%) and 1 × 6 configuration for MLDPCW (81%) show maximum power transmission.
基金supported by the National Natural Science Foundation of China(No.11675249)
文摘A novel variable C-band radio-frequency (RF) power splitter was designed at Shanghai Institute of Applied Physics, Chinese Academy of Sciences. Using three RF impedance combiners, an H-bend, and an RF polarizer, this new power splitter is much more compact than a traditionally designed splitter, which comprises three 3-dB hybrids. The parameters were optimized to achieve good matching and minimize reflection. Here, the RF design of the new C-band variable power splitter is presented.
文摘An initial structure design of MMI 1×8 optical power splitters is reported.The waveguide material is Si-based SiO2 Ge-doped and deposited by PECVD method.Embedded strip structure is implied in the section design.By using BPM-CAD,a favorable result is obtained that this device has a sound uniformity and fairly low loss.Meanwhile,simulations of designs with certain changed parameters is also implemented for a better design configuration.
基金Project Supported by National Natural Science Foundation of China Under Grant No.696770 1 2 and Major State BasicResearch Deve
文摘A 1×8 GaAs/GaAlAs optical power splitter based on a MultiMode Interference (MMI) coupler is presented. The input and output single mode waveguides are optimized by the Discrete Spectral Index Method (DSIM) and a moderate square spot on the output in deep etched rib waveguides is obtained. The fabrication tolerance has been analyzed by the Finite Difference Beam Propagation Method (FDBPM). The device was fabricated by the dry etching technique and the near field output obtained. The device shows polarization insensitive, large fabrication tolerance, low theoretical excess loss and low power imbalance.
文摘A 1×8 multimode interference power splitter with multimode input/output waveguides in SOI material is designed by the beam propagation method and fabricated by the inductive coupled plasma etching technology for use in fiber optics communication systems.The fabricated device exhibits low loss and good coupling uniformity.The excess loss is lower than 0 8dB,and the uniformity is 0 45dB at the wavelength of 1550nm.Moreover,the polarization dependent loss is lower than 0 7dB at 1550nm.The device size is only 2mm×10mm.
基金supported by the National Natural Science Foundation of China(Nos.62275134,62234008,and 61875098)the Zhejiang Provincial Natural Science Foundation(Nos.LY20F050003 and LY20F050001)+2 种基金the Youth Science and Technology Innovation Leading Talent Project of Ningbo(No.2023QL003)the Natural Science Foundation of Ningbo(Nos.2022J099 and 202003N4159)the K.C.Wong Magna Fund in Ningbo University。
文摘A polarization-insensitive mode-order converting power splitter using a pixelated region is presented and investigated in this paper.As TE_(0)and TM_(0)modes are injected into the input port,they are converted into TE_(1)and TM_(1)modes,which evenly come out from the two output ports.The finite-difference time-domain method and direct-binary-search optimization algorithm are utilized to optimize structural parameters of the pixelated region to attain small insertion loss,low crosstalk,wide bandwidth,excellent power uniformity,polarization-insensitive property,and compact size.Experimental results reveal that the insertion loss,crosstalk,and power uniformity of the fabricated device at 1550 nm are 0.57,-19.67,and 0.094 d B in the case of TE polarization,while in the TM polarization,the relevant insertion loss,crosstalk,and power uniformity are 0.57,-19.40,and 0.11 d B.Within a wavelength range from 1520 to 1600 nm,for the fabricated device working at TE polarization,the insertion loss,crosstalk,and power uniformity are lower than 1.39,-17.64,and 0.14 dB.In the case of TM polarization,we achieved an insertion loss,crosstalk,and power uniformity less than 1.23,-17.62,and 0.14 dB.
基金supported by the ZTE Industry-University-Institute Fund Project under Grant No.IA20221202011。
文摘Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or photomask.In this paper,we demonstrate the design and fabrication of a planar lightwave circuit(PLC)power splitter encoded with waveguide Bragg gratings(WBG)using a femtosecond laser inscription technique for passive optical network(PON)fault localization application.Both the reflected wavelengths and intervals of WBGs can be conveniently tuned.In the experiment,we succeeded in directly inscribing WBGs in 1×4 PLC splitter chips with a wavelength interval of about 4 nm and an adjustable reflectivity of up to 70% in the C-band.The proposed method is suitable for the prototyping of a PLC splitter encoded with WBG for PON fault localization applications.