期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Shake table experimental study of cable-stayed bridges with two different design strategies of H-shaped towers
1
作者 Xu Yan Cui Cunyu +1 位作者 Zeng Zeng Zeng Shijie 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第2期483-493,共11页
As one of the main load-carrying components of cable-stayed bridges,bridge towers are typically required to remain elastic even when subjected to severe ground motions with a 2%-3%probability of exceedance in 50 years... As one of the main load-carrying components of cable-stayed bridges,bridge towers are typically required to remain elastic even when subjected to severe ground motions with a 2%-3%probability of exceedance in 50 years.To fulfill this special requirement imposed by current seismic design codes,reinforcement ratios in the bridge towers have to be kept significantly higher than if limited ductility behavior of the tower is allowed.In addition,since the foundation capacity is closely related to the moment and shear capacities of the bridge tower,a large increase in bridge construction cost for elastically designed cable-stayed bridge is inevitable.To further investigate the possibility of limited ductility bridge tower design strategies,a new 1/20-scale cable-stayed bridge model with H-shaped bridge towers designed according to strong strut-weak tower column design was tested.The shake table experimental results are compared with a previous strong tower column-weak strut designed full bridge model.A comparison of the results show that ductility design with plastic hinges located on tower columns,i.e.,strong strut-weak tower column design,is another effective seismic design strategy that results in only small residual displacement at the top of the tower column,even under very severe earthquake excitations. 展开更多
关键词 cable-stayed bridge shake table experiment limited ductility design H-shaped bridge tower seismic design
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部