Precise integration methods to solve structural dynamic responses and the corresponding time integration formula are composed of two parts: the multiplication of an exponential matrix with a vector and the integratio...Precise integration methods to solve structural dynamic responses and the corresponding time integration formula are composed of two parts: the multiplication of an exponential matrix with a vector and the integration term. The second term can be solved by the series solution. Two hybrid granularity parallel algorithms are designed, that is, the exponential matrix and the first term are computed by the fine-grained parallel algorithra and the second term is computed by the coarse-grained parallel algorithm. Numerical examples show that these two hybrid granularity parallel algorithms obtain higher speedup and parallel efficiency than two existing parallel algorithms.展开更多
A study is presented for the large deflection dynamic response of rigid- plastic circular plate resting on potential fluid under a rectangular pressure pulse load. By virtue of Hankel integral transform technique,this...A study is presented for the large deflection dynamic response of rigid- plastic circular plate resting on potential fluid under a rectangular pressure pulse load. By virtue of Hankel integral transform technique,this interaction problem is reduced to a problem of dynamic plastic response of the plate in vacuum.The closed-form solutions are derived for both middle and high pressure loads by solving the equations of motion with the large deflection in the range where both bending moments and membrane forces are important.Some numerical results are given.展开更多
The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcom...The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcome the result mesh-sensitivity problem in the dynamic strain softening or strain localization analysis. The equations for the dynamic elastic-plastic problems are derived in terms of the parametric variational principle, which is valid for associated, non-associated and strain softening plastic constitutive models in the finite element analysis. The precise integration method, which has been widely used for discretization in time domain of the linear problems, is introduced for the solution of dynamic nonlinear equations. The new algorithm proposed is based on the combination of the parametric quadratic programming method and the precise integration method and has all the advantages in both of the algorithms. Results of numerical examples demonstrate not only the validity, but also the advantages of the algorithm proposed for the numerical solution of nonlinear dynamic problems.展开更多
The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with c...The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with contour integral of the Laplace inverse transform specifically,the general analytical expressions of the soil displacement and stress are obtained in the time domain,respectively.And the numerical solutions of the problem computed by analytical expressions are presented.In the time domain,the dynamic responses of the infinite elastic soil are analyzed,and the calculation results are compared with those from numerical inversion proposed by Durbin and the static results.One observes good agreement between analytical and numerical inversion results,lending the further support to the method presented.Finally,some valuable shear wave propagation laws are gained: the displacement of the soil remains zero before the wave arrival,and after the shear wave arrival,the stress and the displacement at this point increase abruptly,then reduce and tend to the static value gradually at last.The wave attenuates along the radial,therefore the farther the wave is from the source,the smaller the stress and the displacement are,and the stress and the displacement are just functions of the radial distance from the axis.展开更多
A time integration algorithm for structural dynamic analysis is proposed by uniform cubic B-spline functions. The proposed algorithm is successfully used to solve the dynamic response of a single degree of freedom (S...A time integration algorithm for structural dynamic analysis is proposed by uniform cubic B-spline functions. The proposed algorithm is successfully used to solve the dynamic response of a single degree of freedom (SDOF) system, and then is generalized for a multiple-degree of freedom (MDOF) system. Stability analysis shows that, with an adjustable algorithmic parameter, the proposed method can achieve both conditional and unconditional stabilities. Validity of the method is shown with four numerical simulations. Comparison between the proposed method and other methods shows that the proposed method possesses high computation accuracy and desirable computation efficiency.展开更多
Based on the principle of linear superposition, this paper proves generalized Duhamel's integral which reserves moving dynamical load problem to fixed dynamical load problem. Laplace transform and Fourier transfor...Based on the principle of linear superposition, this paper proves generalized Duhamel's integral which reserves moving dynamical load problem to fixed dynamical load problem. Laplace transform and Fourier transform are used to solve patial differential equation of infinite beam. The generalized Duhamel's integral and deflection impulse response function of the beam make it easy for us to obtain final solution of moving line load problem. Deep analyses indicate that the extreme value of dynamic response always lies in the center of the line load and travels with moving load at the same speed. Additionally, the authors also present definition of moving dynamic coefficient which reflects moving effect.展开更多
A numerical scheme for the nonlinear behavior of structure under wind excitation is investigated. With the white noise filter of turbulent-wind fluctuations, the nonlinear motion equation of structures subjected to wi...A numerical scheme for the nonlinear behavior of structure under wind excitation is investigated. With the white noise filter of turbulent-wind fluctuations, the nonlinear motion equation of structures subjected to wind load was modeled as the Ito' s stochastic differential equation. The state vector associated with such a model is a diffusion process. A continuous linearization strategy in the time-domain was adopted. Based on the solution series of its stochastic linearization equations, the formal probabilistic density of the structure response was developed by the path integral technique. It is shown by the numerical example of a guyed mast that compared with the frequency-domain method and the time-domain nonlinear analysis, the proposed approach is highlighted by high accuracy and effectiveness. The influence of the structure non-linearity on the dynamic reliability assessment is also analyzed in the example.展开更多
Conventional squeeze film dampers have numerous challenges including lock up,bistable response and incoordinate precession.In order to resolve these nonlinear problems,a novel G-type integral squeeze film damper(GISFD...Conventional squeeze film dampers have numerous challenges including lock up,bistable response and incoordinate precession.In order to resolve these nonlinear problems,a novel G-type integral squeeze film damper(GISFD)is proposed in this research.The experimental test rig is provided to investigate the rotor system with an unbalanced single disk.Numerical simulation results show that the structural design of GISFD is reasonable,which can ensure its safe and stable operation.The influence of different support stiffnesses on the first-order speed of the rotor system is analyzed.Experimental results show that GISFD can effectively suppress the unbalanced response vibration of the rotor.In a certain range,it is found that the suppression effect of GISFD increases with the increase in the kinematic viscosity of the damping fluid.When the silicone oil with kinematic viscosity coefficients v=30.0 cm^(2)/s is employed,the vibration reduction of GISFD is approximately 71.51%.Furthermore,the experimental results show that with the increase of the unbalance,there is a linear relationship between the unbalance and the corresponding amplitude of the unbalanced response.It is concluded that GISFD has excellent linear damping characteristics and reduces the sensitivity of the rotor system to the unbalanced mass.展开更多
Based on electromagnetics and mechanics, electromechanical coupled dynamic equations for the drive were developed. Using method of perturbation, free vibrations of the mechanical system under electric disturbance were...Based on electromagnetics and mechanics, electromechanical coupled dynamic equations for the drive were developed. Using method of perturbation, free vibrations of the mechanical system under electric disturbance were investigated. The forced responses of the mechanical system to mechanical excitation under electric disturbance were also presented. It is known that for the system with electric disturbance, as time grows, beat occurs. When electric disturbing frequency is near to the natural frequencies of the mechanical system or their integer multiple, resonance vibrations occur. The forced responses of the mechanical system to mechanical excitation under electric disturbance are compound vibrations decided by mechanical excitation, electric disturbance and parameters of the system. The coupled resonance vibration caused by electric disturbance and mechanical excitation was discussed as well. The conditions under which above coupled resonance occurs were presented. The results show that when the difference of the excitation frequency and the perturbation frequency is equal to some order of natural frequency, coupled resonance vibrations occur.展开更多
When dynamic force is applied to a saturated porous soil, drainage is common. In this paper, the saturated porous soil with a two-phase saturated medium is simulated, and Lamb's integral formulas with drainage and st...When dynamic force is applied to a saturated porous soil, drainage is common. In this paper, the saturated porous soil with a two-phase saturated medium is simulated, and Lamb's integral formulas with drainage and stress formulas for a two-phase saturated medium are given based on Biot's equation and Betti's theorem (the reciprocal theorem). According to the basic solution to Biot's equation, Green's function Gij and three terms of Green's function G4i, Gi4, and G44 of a two-phase saturated medium subject to a concentrated force on a spherical coordinate are presented. The displacement field with drainage, the magnitude of drainage, and the pore pressure of the center explosion source are obtained in computation. The results of the classical Sharpe's solutions and the solutions of the two-phase saturated medium that decays to a single-phase medium are compared. Good agreement is observed.展开更多
A strategy is proposed based on the stochastic averaging method for quasi non- integrable Hamiltonian systems and the stochastic dynamical programming principle.The pro- posed strategy can be used to design nonlinear ...A strategy is proposed based on the stochastic averaging method for quasi non- integrable Hamiltonian systems and the stochastic dynamical programming principle.The pro- posed strategy can be used to design nonlinear stochastic optimal control to minimize the response of quasi non-integrable Hamiltonian systems subject to Gaussian white noise excitation.By using the stochastic averaging method for quasi non-integrable Hamiltonian systems the equations of motion of a controlled quasi non-integrable Hamiltonian system is reduced to a one-dimensional av- eraged It stochastic differential equation.By using the stochastic dynamical programming princi- ple the dynamical programming equation for minimizing the response of the system is formulated. The optimal control law is derived from the dynamical programming equation and the bounded control constraints.The response of optimally controlled systems is predicted through solving the FPK equation associated with It stochastic differential equation.An example is worked out in detail to illustrate the application of the control strategy proposed.展开更多
Welded joint is a mechanical heterogeneous body, and mechanical heterogeneity has great effect on dynamic fracture behaviour of welded joints. In the present investigation, dynamic response curve and dynamic J-integra...Welded joint is a mechanical heterogeneous body, and mechanical heterogeneity has great effect on dynamic fracture behaviour of welded joints. In the present investigation, dynamic response curve and dynamic J-integral of practical undermatched welded joint and whole base and whole weld three-point-bend (TPB) models containing longitudinal crack are com- puted. Dynamic J-integral is evaluated using virtual crack extension (VCE) method and the computation is performed using MARC finite element code. Because of the effect of inertia, dynamic load response curve of computed model waves periodically. Dynamic J-integral evaluated by VCE method is path independent. The effect of inertia has little influence on dynamic J-integral curve. The value of dynamic J-integral of undermatched welded joint is lower than that of whole base metal and higher than that of whole weld metal. The results establish the foundation of safety evaluation for dynamic loaded welded structures.展开更多
基金the National Natural Science Foundation of China(No.60273048).
文摘Precise integration methods to solve structural dynamic responses and the corresponding time integration formula are composed of two parts: the multiplication of an exponential matrix with a vector and the integration term. The second term can be solved by the series solution. Two hybrid granularity parallel algorithms are designed, that is, the exponential matrix and the first term are computed by the fine-grained parallel algorithra and the second term is computed by the coarse-grained parallel algorithm. Numerical examples show that these two hybrid granularity parallel algorithms obtain higher speedup and parallel efficiency than two existing parallel algorithms.
基金The study is supported by National Natural Science Foundation of China.
文摘A study is presented for the large deflection dynamic response of rigid- plastic circular plate resting on potential fluid under a rectangular pressure pulse load. By virtue of Hankel integral transform technique,this interaction problem is reduced to a problem of dynamic plastic response of the plate in vacuum.The closed-form solutions are derived for both middle and high pressure loads by solving the equations of motion with the large deflection in the range where both bending moments and membrane forces are important.Some numerical results are given.
文摘The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcome the result mesh-sensitivity problem in the dynamic strain softening or strain localization analysis. The equations for the dynamic elastic-plastic problems are derived in terms of the parametric variational principle, which is valid for associated, non-associated and strain softening plastic constitutive models in the finite element analysis. The precise integration method, which has been widely used for discretization in time domain of the linear problems, is introduced for the solution of dynamic nonlinear equations. The new algorithm proposed is based on the combination of the parametric quadratic programming method and the precise integration method and has all the advantages in both of the algorithms. Results of numerical examples demonstrate not only the validity, but also the advantages of the algorithm proposed for the numerical solution of nonlinear dynamic problems.
文摘The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with contour integral of the Laplace inverse transform specifically,the general analytical expressions of the soil displacement and stress are obtained in the time domain,respectively.And the numerical solutions of the problem computed by analytical expressions are presented.In the time domain,the dynamic responses of the infinite elastic soil are analyzed,and the calculation results are compared with those from numerical inversion proposed by Durbin and the static results.One observes good agreement between analytical and numerical inversion results,lending the further support to the method presented.Finally,some valuable shear wave propagation laws are gained: the displacement of the soil remains zero before the wave arrival,and after the shear wave arrival,the stress and the displacement at this point increase abruptly,then reduce and tend to the static value gradually at last.The wave attenuates along the radial,therefore the farther the wave is from the source,the smaller the stress and the displacement are,and the stress and the displacement are just functions of the radial distance from the axis.
基金Project supported by the National Natural Science Foundation of China(Nos.11602004 and11602081)the Fundamental Research Funds for the Central Universities(No.531107040934)
文摘A time integration algorithm for structural dynamic analysis is proposed by uniform cubic B-spline functions. The proposed algorithm is successfully used to solve the dynamic response of a single degree of freedom (SDOF) system, and then is generalized for a multiple-degree of freedom (MDOF) system. Stability analysis shows that, with an adjustable algorithmic parameter, the proposed method can achieve both conditional and unconditional stabilities. Validity of the method is shown with four numerical simulations. Comparison between the proposed method and other methods shows that the proposed method possesses high computation accuracy and desirable computation efficiency.
文摘Based on the principle of linear superposition, this paper proves generalized Duhamel's integral which reserves moving dynamical load problem to fixed dynamical load problem. Laplace transform and Fourier transform are used to solve patial differential equation of infinite beam. The generalized Duhamel's integral and deflection impulse response function of the beam make it easy for us to obtain final solution of moving line load problem. Deep analyses indicate that the extreme value of dynamic response always lies in the center of the line load and travels with moving load at the same speed. Additionally, the authors also present definition of moving dynamic coefficient which reflects moving effect.
文摘A numerical scheme for the nonlinear behavior of structure under wind excitation is investigated. With the white noise filter of turbulent-wind fluctuations, the nonlinear motion equation of structures subjected to wind load was modeled as the Ito' s stochastic differential equation. The state vector associated with such a model is a diffusion process. A continuous linearization strategy in the time-domain was adopted. Based on the solution series of its stochastic linearization equations, the formal probabilistic density of the structure response was developed by the path integral technique. It is shown by the numerical example of a guyed mast that compared with the frequency-domain method and the time-domain nonlinear analysis, the proposed approach is highlighted by high accuracy and effectiveness. The influence of the structure non-linearity on the dynamic reliability assessment is also analyzed in the example.
基金Supported by the National Science and Technology Major Project(No.2017-Ⅳ-0010-0047)the Fundamental Research Funds for the Central Universities(No.JD2003)。
文摘Conventional squeeze film dampers have numerous challenges including lock up,bistable response and incoordinate precession.In order to resolve these nonlinear problems,a novel G-type integral squeeze film damper(GISFD)is proposed in this research.The experimental test rig is provided to investigate the rotor system with an unbalanced single disk.Numerical simulation results show that the structural design of GISFD is reasonable,which can ensure its safe and stable operation.The influence of different support stiffnesses on the first-order speed of the rotor system is analyzed.Experimental results show that GISFD can effectively suppress the unbalanced response vibration of the rotor.In a certain range,it is found that the suppression effect of GISFD increases with the increase in the kinematic viscosity of the damping fluid.When the silicone oil with kinematic viscosity coefficients v=30.0 cm^(2)/s is employed,the vibration reduction of GISFD is approximately 71.51%.Furthermore,the experimental results show that with the increase of the unbalance,there is a linear relationship between the unbalance and the corresponding amplitude of the unbalanced response.It is concluded that GISFD has excellent linear damping characteristics and reduces the sensitivity of the rotor system to the unbalanced mass.
基金Project(51075350)supported by the National Natural Science Foundation of China
文摘Based on electromagnetics and mechanics, electromechanical coupled dynamic equations for the drive were developed. Using method of perturbation, free vibrations of the mechanical system under electric disturbance were investigated. The forced responses of the mechanical system to mechanical excitation under electric disturbance were also presented. It is known that for the system with electric disturbance, as time grows, beat occurs. When electric disturbing frequency is near to the natural frequencies of the mechanical system or their integer multiple, resonance vibrations occur. The forced responses of the mechanical system to mechanical excitation under electric disturbance are compound vibrations decided by mechanical excitation, electric disturbance and parameters of the system. The coupled resonance vibration caused by electric disturbance and mechanical excitation was discussed as well. The conditions under which above coupled resonance occurs were presented. The results show that when the difference of the excitation frequency and the perturbation frequency is equal to some order of natural frequency, coupled resonance vibrations occur.
基金Project supported by the National Natural Science Foundation of China(No.10572129)
文摘When dynamic force is applied to a saturated porous soil, drainage is common. In this paper, the saturated porous soil with a two-phase saturated medium is simulated, and Lamb's integral formulas with drainage and stress formulas for a two-phase saturated medium are given based on Biot's equation and Betti's theorem (the reciprocal theorem). According to the basic solution to Biot's equation, Green's function Gij and three terms of Green's function G4i, Gi4, and G44 of a two-phase saturated medium subject to a concentrated force on a spherical coordinate are presented. The displacement field with drainage, the magnitude of drainage, and the pore pressure of the center explosion source are obtained in computation. The results of the classical Sharpe's solutions and the solutions of the two-phase saturated medium that decays to a single-phase medium are compared. Good agreement is observed.
基金Project supported by the National Natural Science Foundation of China(No.19972059).
文摘A strategy is proposed based on the stochastic averaging method for quasi non- integrable Hamiltonian systems and the stochastic dynamical programming principle.The pro- posed strategy can be used to design nonlinear stochastic optimal control to minimize the response of quasi non-integrable Hamiltonian systems subject to Gaussian white noise excitation.By using the stochastic averaging method for quasi non-integrable Hamiltonian systems the equations of motion of a controlled quasi non-integrable Hamiltonian system is reduced to a one-dimensional av- eraged It stochastic differential equation.By using the stochastic dynamical programming princi- ple the dynamical programming equation for minimizing the response of the system is formulated. The optimal control law is derived from the dynamical programming equation and the bounded control constraints.The response of optimally controlled systems is predicted through solving the FPK equation associated with It stochastic differential equation.An example is worked out in detail to illustrate the application of the control strategy proposed.
基金National Natural Science Foundation of China(No.59501011)Science and Technology New Star Project of Beijing.
文摘Welded joint is a mechanical heterogeneous body, and mechanical heterogeneity has great effect on dynamic fracture behaviour of welded joints. In the present investigation, dynamic response curve and dynamic J-integral of practical undermatched welded joint and whole base and whole weld three-point-bend (TPB) models containing longitudinal crack are com- puted. Dynamic J-integral is evaluated using virtual crack extension (VCE) method and the computation is performed using MARC finite element code. Because of the effect of inertia, dynamic load response curve of computed model waves periodically. Dynamic J-integral evaluated by VCE method is path independent. The effect of inertia has little influence on dynamic J-integral curve. The value of dynamic J-integral of undermatched welded joint is lower than that of whole base metal and higher than that of whole weld metal. The results establish the foundation of safety evaluation for dynamic loaded welded structures.