期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Evaluation of Productivity and Light Quality in Two High Density Dwarf Rootstock Apple Orchards in Central China 被引量:2
1
作者 高登涛 郭景南 +2 位作者 魏志峰 范庆锦 杨朝选 《Agricultural Science & Technology》 CAS 2012年第9期1848-1853,2011,共7页
[Ohjective] The aim of the study is to investigate the productivity and light quality in two high density M26 dwarf rootstock apple orchards in central China so as to provide some management guidance for close plantin... [Ohjective] The aim of the study is to investigate the productivity and light quality in two high density M26 dwarf rootstock apple orchards in central China so as to provide some management guidance for close planting of dwarf rootstock apples.[Method] The technical parameters of individual trees and group parameters as shoot number and composition and canopy coverage were determined, and the light quality in the canopy, fruit production and quality were investigated. [Result] Slender spindle (SS) orchard has 54 thousands shoots per 667 m^2. Coverage rate is 76%. Leaf area index is 1.9. The ratio of long, medium and spur shoots is 1:1:8. Fruit yield is 3 263 kg/667 m^2 with 85% first grade fruit. Light interception in the canopy is 58% while the ratio of canopy with good light is 65%. Modified slender spindle (MSS) orchard has 93 thousands shoots per 667 m^2 and the coverage is 77%. Leaf area index is 3.3. The ratio cf long, medium and spur shoots is 1:2:7. Fruit yield is 3 931 kg/667 m^2 with 85% first grade fruit. The light interception in the canopy is 73% while the ratio of canopy with good light is 35%. [Conclusion] Apple orchard with M26 dwarf rootstock trained as SS and MSS tree form in medium planting density may be useful to the management of the similar orchards in Central China. 展开更多
关键词 apple trees on dwarf rootstocks High density planting Tree form Pro-ductivity Light quality
下载PDF
Dwarfi ng apple rootstock responses to elevated temperatures: A study on plant physiological features and transcription level of related genes 被引量:2
2
作者 ZHOU Bei-bei SUN Jian +3 位作者 LIU Song-zhong JIN Wan-mei ZHANG Qiang WEI Qin-ping 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第5期1025-1033,共9页
The aim of this study was to investigate the impact of heat stress on physiological features, together with endogenous hormones and the transcription level of related genes, to estimate the heat resistance ability and... The aim of this study was to investigate the impact of heat stress on physiological features, together with endogenous hormones and the transcription level of related genes, to estimate the heat resistance ability and stress injury mechanism of different dwarfing apple rootstocks. Among the six rootstocks, the rootstocks of native Shao series(SH series) showed better heat stress resistance than those of Budagovski 9(B9), Cornell-Geneva 24(CG24), and Malling 26(M26) from abroad. Among SH series rootstocks, SH1 and SH6 showed higher heat stress resistance than SH40. M26 demonstrated the lowest adaption ability to heat stress, showing higher leaf conductivity and lower liquid water content(LWC) with the increase in temperature. Heat stress also resulted in the suppression of photosynthesis, which showed no significant restoration after 7-day recovery. It should be noted that although a higher temperature led to a lower LWC and photosynthetic efficiency(P_n) of CG24, there was no significant increase in leaf conductivity, and 7 days after the treatment, the P_n of CG24 recovered. The extremely high temperature tolerance of SH series rootstocks could be related to the greater osmotic adjustment(OA), which was reflected by smaller reductions in leaf relative water content(RWC) and higher turgor potentials and leaf gas exchange compared with the other rootstocks. Determination of hormones indicated multivariate regulation, and it is presumed that a relatively stable expression levels of functional genes under high-temperature stress is necessary for heat stress resistance of rootstocks. 展开更多
关键词 dwarfing apple rootstock SH series rootstocks heat stress physiological features
下载PDF
Physiological mechanisms of resistance to cold stress associated with 10 elite apple rootstocks 被引量:20
3
作者 WANG Yan-xiu HU Ya +3 位作者 CHEN Bai-hong ZHU Yan-fang Mohammed Mujitaba Dawuda Sofkova Svetla 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第4期857-866,共10页
A study was conducted in attempting to identify the cold-resistant apple rootstocks and to establish a comprehensive evaluation system. In this study, 10 elite apple dwarfing rootstocks(GM256, JM7, M26, M7, SC1, SH1, ... A study was conducted in attempting to identify the cold-resistant apple rootstocks and to establish a comprehensive evaluation system. In this study, 10 elite apple dwarfing rootstocks(GM256, JM7, M26, M7, SC1, SH1, SH38, SH6, M9, and T337) were employed for the experiment and the following parameters were investigated under different low temperature stress conditions(0, –15, –20, –25, –30, and –35°C): the changes of the relative electrical conductivity(REC), anthocyanin content, protein content, soluble sugar content, soluble starch content, proline content, malondialdehyde(MDA) content, superoxide dismutase(SOD) activity, and peroxidase(POD) activity of the dormant branches. The inflection temperature that could represent the plant tissue semi-lethal temperature(LT) was obtained by the measurements of REC. The LTwas used to evaluate eight other indices. The results showed that there was no significant correlation between LTand POD activity as well as between the soluble sugar, protein and proline contents at 0 and –15°C. Soluble starch content at 0 and –15°C and anthocyanin content at –15–(–30)°C were significantly but negatively correlated to the LT50 and the MDA content at 0–(–20)°C was significantly positively correlated to the LT. Statistical analysis based on principal component analysis and LT50 showed that cold resistant apple rootstocks in the decreasing order from high to low as GM256, SH6, SH38, SH1, SC1, M26, M7, JM7, T337, and M9. 展开更多
关键词 cold resistance LT_(50) principal component analysis apple dwarfing rootstock
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部