This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
A dynamic hesitant fuzzy linguistic group decisionmaking(DHFLGDM) problem is studied from the perspective of information reliability based on the theory of hesitant fuzzy linguistic term sets(HFLTSs). First, an approa...A dynamic hesitant fuzzy linguistic group decisionmaking(DHFLGDM) problem is studied from the perspective of information reliability based on the theory of hesitant fuzzy linguistic term sets(HFLTSs). First, an approach is applied to transform the dynamic HFLTSs(DHFLTSs) into a set of proportional linguistic terms to eliminate the time dimension. Second, expert reliability is measured by considering both group similarity and degree of certainty, and an optimization method is employed to quantify the linguistic terms by maximizing the group similarity. Third, through computing the attribute stability as well as its reliability, a combination rule which considers both reliability and weight is proposed to aggregate the information, and then the aggregated grade values and degree of stability are used to make a selection. Finally,the application and feasibility of the proposed method are verified through a case study and method comparison.展开更多
This paper presents the formulation of the possibilistic Renyi entropy function from the Renyi entropy function using the framework of Hanman-Anirban entropy function. The new entropy function is used to derive the in...This paper presents the formulation of the possibilistic Renyi entropy function from the Renyi entropy function using the framework of Hanman-Anirban entropy function. The new entropy function is used to derive the information set features from keystroke dynamics for the authentication of users. A new composite fuzzy classifier is also proposed based on Mamta-Hanman entropy function and applied on the Information Set based features. A comparison of the results of the proposed approach with those of Support Vector Machine and Random Forest classifier shows that the new classifier outperforms the other two.展开更多
As the air combat environment becomes more complicated and changeable, accurate threat assessment of air target has a significant impact on air defense operations. This paper proposes an improved generalized intuition...As the air combat environment becomes more complicated and changeable, accurate threat assessment of air target has a significant impact on air defense operations. This paper proposes an improved generalized intuitionistic fuzzy soft set (GIFSS) method for dynamic assessment of air target threat. Firstly, the threat assessment index is reasonably determined by analyzing the typical characteristics of air targets. Secondly, after the GIFSS at different time is obtained, the index weight is determined by the intuitionistic fuzzy set entropy and the relative entropy theory. Then, the inverse Poisson distribution method is used to determine the weight of time series, and then the time-weighted GIFSS is obtained. Finally, threat assessment of five air targets is carried out by using the improved GIFSS (I-GIFSS) and comparison methods. The validity and superiority of the proposed method are verified by calculation and comparison.展开更多
In lots of data based prediction or modeling applications,uncertainties and/or noises in the observed data cannot be avoided.In such cases,it is more preferable and reasonable to provide linguistic(fuzzy)predicted res...In lots of data based prediction or modeling applications,uncertainties and/or noises in the observed data cannot be avoided.In such cases,it is more preferable and reasonable to provide linguistic(fuzzy)predicted results described by fuzzy memberships or fuzzy sets instead of the crisp estimates depicted by numbers.Linguistic dynamic system(LDS)provides a powerful tool for yielding linguistic(fuzzy)results.However,it is still difficult to construct LDS models from observed data.To solve this issue,this paper first presents a simplified LDS whose inputoutput mapping can be determined by closed-form formulas.Then,a hybrid learning method is proposed to construct the data-driven LDS model.The proposed hybrid learning method firstly generates fuzzy rules by the subtractive clustering method,then carries out further optimization of centers of the consequent triangular fuzzy sets in the fuzzy rules,and finally adopts multiobjective optimization algorithm to determine the left and right end-points of the consequent triangular fuzzy sets.The proposed approach is successfully applied to three real-world prediction applications which are:prediction of energy consumption of a building,forecasting of the traffic flow,and prediction of the wind speed.Simulation results show that the uncertainties in the data can be effectively captured by the linguistic(fuzzy)estimates.It can also be extended to some other prediction or modeling problems,in which observed data have high levels of uncertainties.展开更多
Risk evaluation is an effective way to reduce the impacts of natural hazards and it plays an increasingly important role in emergency management. Traditional methods of assessing risks mainly utilize Geographic Inform...Risk evaluation is an effective way to reduce the impacts of natural hazards and it plays an increasingly important role in emergency management. Traditional methods of assessing risks mainly utilize Geographic Information System (GIS) to get risk map, and information diffusion method (IDM) to deal with incomplete data sets. However, there are few papers discuss the uncertainty of integrated hazards and consider dynamic risk under time dimension. The model proposed in this study combines the variable fuzzy set theory with information diffusion method (VFS-IDM) to solve the uncertainness of multiple hazards dynamic risk assessment when data sets are incomplete. This study employs fuzzy set theory (VFS) to calculate the relative membership degree and applies information entropy method (IEM) to obtain the weights of criteria indicators for multiple hazards evaluation. Then applies information diffusion method (IDM) to estimate condition probability distribution and vulnerability curve with the VFS-IEM model results, time data and multiple hazards losses. Then the expected value of multiple hazards dynamic risk can be calculated by using the normal information diffusion estimator so as to improve the accuracy of risk evaluation results.展开更多
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
基金supported by National Natural Science Foundation of China(61074093,61473048,61233008)the Open Research Project from SKLMCCS(20150101)Youth Talent Support Plan of Changsha University of Science and Technology
基金supported by the National Natural Science Foundation of China(71171112 71502073+2 种基金 71601002)the Scientific Innovation Research of College Graduates in Jiangsu Province(KYZZ150094)the Anhui Provincial Natural Science Foundation(1708085MG168)
文摘A dynamic hesitant fuzzy linguistic group decisionmaking(DHFLGDM) problem is studied from the perspective of information reliability based on the theory of hesitant fuzzy linguistic term sets(HFLTSs). First, an approach is applied to transform the dynamic HFLTSs(DHFLTSs) into a set of proportional linguistic terms to eliminate the time dimension. Second, expert reliability is measured by considering both group similarity and degree of certainty, and an optimization method is employed to quantify the linguistic terms by maximizing the group similarity. Third, through computing the attribute stability as well as its reliability, a combination rule which considers both reliability and weight is proposed to aggregate the information, and then the aggregated grade values and degree of stability are used to make a selection. Finally,the application and feasibility of the proposed method are verified through a case study and method comparison.
文摘This paper presents the formulation of the possibilistic Renyi entropy function from the Renyi entropy function using the framework of Hanman-Anirban entropy function. The new entropy function is used to derive the information set features from keystroke dynamics for the authentication of users. A new composite fuzzy classifier is also proposed based on Mamta-Hanman entropy function and applied on the Information Set based features. A comparison of the results of the proposed approach with those of Support Vector Machine and Random Forest classifier shows that the new classifier outperforms the other two.
基金supported by the National Natural Science Foundation of China(51779263)
文摘As the air combat environment becomes more complicated and changeable, accurate threat assessment of air target has a significant impact on air defense operations. This paper proposes an improved generalized intuitionistic fuzzy soft set (GIFSS) method for dynamic assessment of air target threat. Firstly, the threat assessment index is reasonably determined by analyzing the typical characteristics of air targets. Secondly, after the GIFSS at different time is obtained, the index weight is determined by the intuitionistic fuzzy set entropy and the relative entropy theory. Then, the inverse Poisson distribution method is used to determine the weight of time series, and then the time-weighted GIFSS is obtained. Finally, threat assessment of five air targets is carried out by using the improved GIFSS (I-GIFSS) and comparison methods. The validity and superiority of the proposed method are verified by calculation and comparison.
基金supported by the National Natural Science Foundation of China(61473176,61773246)the Natural Science Foundation of Shandong Province for Outstanding Young Talents in Provincial Universities(ZR2015JL021)the Taishan Scholar Project of Shandong Province(TSQN201812092)
文摘In lots of data based prediction or modeling applications,uncertainties and/or noises in the observed data cannot be avoided.In such cases,it is more preferable and reasonable to provide linguistic(fuzzy)predicted results described by fuzzy memberships or fuzzy sets instead of the crisp estimates depicted by numbers.Linguistic dynamic system(LDS)provides a powerful tool for yielding linguistic(fuzzy)results.However,it is still difficult to construct LDS models from observed data.To solve this issue,this paper first presents a simplified LDS whose inputoutput mapping can be determined by closed-form formulas.Then,a hybrid learning method is proposed to construct the data-driven LDS model.The proposed hybrid learning method firstly generates fuzzy rules by the subtractive clustering method,then carries out further optimization of centers of the consequent triangular fuzzy sets in the fuzzy rules,and finally adopts multiobjective optimization algorithm to determine the left and right end-points of the consequent triangular fuzzy sets.The proposed approach is successfully applied to three real-world prediction applications which are:prediction of energy consumption of a building,forecasting of the traffic flow,and prediction of the wind speed.Simulation results show that the uncertainties in the data can be effectively captured by the linguistic(fuzzy)estimates.It can also be extended to some other prediction or modeling problems,in which observed data have high levels of uncertainties.
文摘Risk evaluation is an effective way to reduce the impacts of natural hazards and it plays an increasingly important role in emergency management. Traditional methods of assessing risks mainly utilize Geographic Information System (GIS) to get risk map, and information diffusion method (IDM) to deal with incomplete data sets. However, there are few papers discuss the uncertainty of integrated hazards and consider dynamic risk under time dimension. The model proposed in this study combines the variable fuzzy set theory with information diffusion method (VFS-IDM) to solve the uncertainness of multiple hazards dynamic risk assessment when data sets are incomplete. This study employs fuzzy set theory (VFS) to calculate the relative membership degree and applies information entropy method (IEM) to obtain the weights of criteria indicators for multiple hazards evaluation. Then applies information diffusion method (IDM) to estimate condition probability distribution and vulnerability curve with the VFS-IEM model results, time data and multiple hazards losses. Then the expected value of multiple hazards dynamic risk can be calculated by using the normal information diffusion estimator so as to improve the accuracy of risk evaluation results.